【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).

1)當(dāng)時(shí),求函數(shù)的極值;

2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍;

3)當(dāng)時(shí),試判斷方程是否有實(shí)數(shù)解,并說(shuō)明理由.

【答案】1)極小值為,無(wú)極大值

2

3)無(wú)實(shí)根,理由見(jiàn)解析

【解析】

1)當(dāng)時(shí),求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可求函數(shù)的極值;

2)函數(shù)在區(qū)間上為單調(diào)函數(shù)等價(jià)于在區(qū)間上恒成立,再利用分離變量最值法即可得解;

3)當(dāng)時(shí),可變形為,再左右分別構(gòu)造函數(shù)求最值即可得解.

解:(1)當(dāng)時(shí),

,則,

當(dāng)時(shí),,時(shí),,

即函數(shù)的減區(qū)間為,增區(qū)間為,

即函數(shù)的極小值為,無(wú)極大值;

2)由函數(shù),

由函數(shù)在區(qū)間上為單調(diào)函數(shù),

在區(qū)間上恒成立,

在區(qū)間上恒成立,

設(shè),,則

當(dāng)時(shí),,

即函數(shù)為減函數(shù),

,

,

,

的取值范圍為;

3)當(dāng)時(shí),方程沒(méi)有實(shí)數(shù)解

理由如下:

當(dāng)時(shí),,

即為,

,

當(dāng)時(shí),,當(dāng)時(shí),

即函數(shù)的增區(qū)間為,減區(qū)間為,

,

,

,

當(dāng)時(shí),,當(dāng)時(shí),,

即函數(shù)的增區(qū)間為,減區(qū)間為,

,

無(wú)實(shí)數(shù)解,

故當(dāng)時(shí),方程沒(méi)有實(shí)數(shù)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且與直線l相切.

1)求動(dòng)圓圓心的軌跡C的方程;

2)過(guò)F作斜率為的直線mC交于兩點(diǎn)A,B,過(guò)A,B分別作C的切線,兩切線交點(diǎn)為P,證明:點(diǎn)P始終在直線l上且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)曲線交于點(diǎn),曲線軸交于點(diǎn),求線段的中點(diǎn)到點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,,中點(diǎn).

1)證明:平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天干地支,簡(jiǎn)稱為干支,源自中國(guó)遠(yuǎn)古時(shí)代對(duì)天象的觀測(cè).“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀(jì)年法是天干和地支依次按固定的順序相互配合組成,以此往復(fù),60年為一個(gè)輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)fx)=3sin(﹣3x)﹣2的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)gx)的圖象,若gx)在區(qū)間[θ]上的最大值為1,則θ的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2axb,g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.

(1)求a,b,c,d的值;

(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知),下列結(jié)論正確的是(

①當(dāng)時(shí),恒成立;②當(dāng)時(shí),的零點(diǎn)為;③當(dāng)時(shí),的極值點(diǎn);④若有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍為.

A.①②④B.①③C.②③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長(zhǎng)方形,長(zhǎng)30 cm,寬26 cm,其內(nèi)部窗芯(不含長(zhǎng)方形邊框)用一種條形木料做成,由兩個(gè)菱形和六根支條構(gòu)成,整個(gè)窗芯關(guān)于長(zhǎng)方形邊框的兩條對(duì)稱軸成軸對(duì)稱.設(shè)菱形的兩條對(duì)角線長(zhǎng)分別為x cmy cm,窗芯所需條形木料的長(zhǎng)度之和為L

1)試用x,y表示L;

2)如果要求六根支條的長(zhǎng)度均不小于2 cm,每個(gè)菱形的面積為130 cm2,那么做這樣一個(gè)窗芯至少需要多長(zhǎng)的條形木料(不計(jì)榫卯及其它損耗)?

查看答案和解析>>

同步練習(xí)冊(cè)答案