已知函數(shù),a∈R是常數(shù).
(1)討論f(x)的單調(diào)性;
(2)求時,f(x)零點的個數(shù);
③求證:(n∈N*,e為自然對數(shù)的底數(shù)).
【答案】分析:(1)討論含參數(shù)的函數(shù)的單調(diào)性問題,先求出導函數(shù)f′(x),令f′(x)>0,本小題要對參數(shù)a分a≥0,-1<a<0,a≤-1三種情形進行討論,對運算能力要求較高;
(2),由(1)的結論-1<a=<0,所以分三個單調(diào)區(qū)間來利用單調(diào)性來討論函數(shù)的零點的個數(shù)問題.
(3)是近年來高考考查的熱點問題,即與函數(shù)結合證明不等式問題,常用的解題思路是利用前面的結論構造函數(shù),利用函數(shù)的單調(diào)性,對于函數(shù)取單調(diào)區(qū)間上的正整數(shù)自變量n有某些結論成立,進而解答出這類不等式問題的解.
解答:解:(1),
若a≥0,則f′(x)>0,f(x)在定義域內(nèi)單調(diào)遞增;若a≤-1,
則f′(x)<0,f(x)在定義域內(nèi)單調(diào)遞減;若-1<a<0,由f′(x)=0
解得,,
直接討論f′(x)知,f(x)在
單調(diào)遞減,
單調(diào)遞增.
(2)觀察得f(0)=0,時,
由①得f(x)在單調(diào)遞減,
所以f(x)在上有且只有一個零點;
,
計算得,
f(x1)f(x2)<0且f(x)在區(qū)間單調(diào)遞增,
所以f(x)在上有且只有一個零點;
根據(jù)對數(shù)函數(shù)與冪函數(shù)單調(diào)性比較知,
存在充分大的M∈R,使f(M)<0,f(x2)f(M)<0
且f(x)在區(qū)單調(diào)遞減,
所以f(x)在
從而在上有且只有一個零點.
綜上所述,時,f(x)有3個零點.
(3)取a=-1,,
由①得f(x)單調(diào)遞減,
所以?x>0,f(x)<f(0)=0,,
從而ln(1+)(1+)…(1+
=ln(1+)ln(1+)+…(1+
++…,
由lnx單調(diào)遞增得
點評:單調(diào)性刻畫函數(shù)兩個變量變化趨勢的一致性,是認識函數(shù)的重要角度,運用單調(diào)性可以確定函數(shù)零點的個數(shù),考查導數(shù)使單調(diào)性可以定量、精確研究這一重要工具.參數(shù)是可變的常數(shù),處理參數(shù)是比較高端的數(shù)學素養(yǎng),本題考查了這一素養(yǎng),因此對學生的綜合應用能力要求較高.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x-2
x+1
(x≠-1,x∈R)
,數(shù)列{an}滿足 a1=a(a≠-1,a∈R),an+1=f(an)(n∈N*).
(1)若數(shù)列{an}是常數(shù)列,求a的值;
(2)當a1=4時,記bn=
an-2
a n-1
(n∈N*)
,證明數(shù)列{bn}是等比數(shù)列,并求出通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x+1
x+2
(x≠-2,x∈R)
,數(shù)列{an}滿足a1=a(a≠-2,a∈R),an+1=f(an)(n∈N*).
(1)若數(shù)列{an}是常數(shù)列,求a的值;
(2)當a1=2時,記bn=
an-1
a n+1
(n∈N*)
,證明數(shù)列{bn}是等比數(shù)列,并求出通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-
a
x
(a∈R),下列說法正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x
x+1
,數(shù)列{an}滿足a1=a(a≠-2,a∈R),an+1=f(an)(n∈N*)
(Ⅰ)若數(shù)列{an}是常數(shù)列,求a的值;
(Ⅱ)當a1=
2
3
時,記bn=
1
an
-1(n∈N*)
,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x-2
x+1
(x≠-1,x∈R)
,數(shù)列{an}滿足 a1=a(a≠-1,a∈R),an+1=f(an)(n∈N*)
(1)若數(shù)列{an}是常數(shù)列,求a的值;
(2)當a1=4時,記bn=
an-2
an-1
(n∈N*)
,證明數(shù)列{bn}是等比數(shù)列,并求
lim
n→∞
an

查看答案和解析>>

同步練習冊答案