(普通班)橢圓的焦距是長軸長與短軸長的比例中頂,則離心率等于   
【答案】分析:設(shè)出橢圓的焦距、短軸長、長軸長分別為2c,2b,2a,通過橢圓的焦距是長軸長與短軸長的比例中頂建立關(guān)于a,b,c的等式,求出橢圓的離心率即可.
解答:解:設(shè)出橢圓的焦距、短軸長、長軸長分別為2c,2b,2a,
∵橢圓的焦距是長軸長與短軸長的比例中頂,
∴(2c)2=2a•2b
∴c2=a•b,
∴c4=a2•b2
∴c4=a2•(a2-c2),
∴c4-a4+a2c2=0,
兩邊同除以a4得:e4+e2-1=0,
解得,e2=,
所以e=,
故答案為:
點評:本題考查橢圓的基本性質(zhì),等比數(shù)列性質(zhì)的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(普通班)橢圓的焦距是長軸長與短軸長的比例中頂,則離心率等于
-1+
5
2
-1+
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆甘肅省高二12月月考文科數(shù)學(xué)試卷 題型:填空題

(普通班)橢圓的焦距是長軸長與短軸長的比例中頂,則離心率等于___________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期第一次月考文科數(shù)學(xué)試卷 題型:解答題

(普通班)已知橢圓ab>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點AB

(1)求橢圓C的標準方程;

(2)當(dāng)橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

(實驗班)已知函數(shù)R).

(Ⅰ)若,求曲線在點處的的切線方程;

(Ⅱ)若對任意恒成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案