精英家教網 > 高中數學 > 題目詳情
(2012•崇明縣二模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x}=m.下列關于函數f(x)=|x-{x}|的四個命題:
①函數y=f(x)的定義域為R,值域為[0,
1
2
];
②函數y=f(x)在[-
1
2
1
2
]上是增函數;
③函數y=f(x)是周期函數,最小正周期為1;
④函數y=f(x)的圖象關于直線x=
k
2
(k∈Z)對稱.
其中正確命題的序號是
①③④
①③④
分析:此題是新定義,首先理解好什么是“m叫做離實數x最近的整數”,然后根據函數f(x)=|x-{x}|的表達式畫出其圖象,就可以判斷出正確命題是①②④.
解答:解:①∵m-
1
2
<x≤m+
1
2
(其中m為整數),
-
1
2
<x-m≤
1
2
,∴0≤|x-m|≤
1
2

∴函數f(x)=|x-{x}|=|x-m|的值域為[0,
1
2
].
②由定義知:當x=-
1
2
時,m=-1,∴f(-
1
2
)=|-
1
2
-(-1)|=
1
2
;
-
1
2
<x≤
1
2
時,m=0,∴f(x)=|x-0|=|x|
1
2
,
故f(x)在[-
1
2
1
2
]
上不是增函數,所以②不正確.
③由-
1
2
<x-m≤
1
2
-
1
2
<(x+1)-(m+1)≤
1
2
,
∴{x+1}={x}+1=m+1,∴f(x+1)=|(x+1)-{x+1}|=|x-{x}|=f(x),
所以函數y=f(x)是周期函數,最小正周期為1.
④由②可知:在x∈[-
1
2
,
1
2
]
時,f(x)=|x|關于y周對稱;
又由③可知:函數y=f(x)是周期函數,最小正周期為1,
∴函數f(x)的圖象關于直線x=
k
2
(k∈Z)對稱.
故答案為①③④.
點評:此題是新定義,綜合考查了函數的值域、單調性、周期性及對稱性.理解好新定義的含義及畫出函數f(x)=|x-{x}|的圖象是做好本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•崇明縣二模)如圖所示的算法流程圖中,若f(x)=2x+3,g(x)=x2,若輸出h(a)=a2,則a的取值范圍是
[3,+∞)∪(-∞,-1]
[3,+∞)∪(-∞,-1]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)若(
x2
2
-
1
3x
)
n
展開式的各項系數和為-
1
27
,則展開式中常數項等于
7
2
7
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)在極坐標系中,已知點A(2,π),B(2,
3
),C是曲線p=2sinθ上任意一點,則△ABC的面積的最小值等于
3
-
1
2
3
-
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)某公司向市場投放三種新型產品,經調查發(fā)現(xiàn)第一種產品受歡迎的概率為
4
5
,第二、第三種產品受歡迎的概率分別為m,n,且不同種產品是否受歡迎相互獨立.記ξ為公司向市場投放三種新型產品受歡迎的數量,其分布列為
ξ 0 1 2 3
P
2
45
a d
8
45
則m+n=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)(理)若已知曲線C1方程為x2-
y2
8
=1(x≥0,y≥0)
,圓C2方程為(x-3)2+y2=1,斜率為k(k>0)直線l與圓C2相切,切點為A,直線l與曲線C1相交于點B,|AB|=
3
,則直線AB的斜率為(  )

查看答案和解析>>

同步練習冊答案