(本小題滿分12分)

設(shè)點到直線的距離與它到定點的距離之比為,并記點的軌跡為曲線

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè),過點的直線與曲線相交于兩點,當(dāng)線段的中點落在由四點構(gòu)成的四邊形內(nèi)(包括邊界)時,求直線斜率的取值范圍.

 

【答案】

(Ⅰ);(Ⅱ)

【解析】

試題分析:(Ⅰ)有題意,     ………………2分

整理得,所以曲線的方程為………………4分

(Ⅱ)顯然直線的斜率存在,所以可設(shè)直線的方程為.

設(shè)點的坐標(biāo)分別為

線段的中點為

解得.…(1) …………7分

由韋達定理得,于是

=,   ……………8分

因為,所以點不可能在軸的右邊,

又直線,方程分別為

所以點在正方形內(nèi)(包括邊界)的充要條件為

 即 亦即 ………………10分

解得,……………(2)  

由(1)(2)知,直線斜率的取值范圍是………………12分

考點:本題考查了圓錐曲線方程的求法及直線與圓錐曲線的位置關(guān)系

點評:橢圓的概念和性質(zhì),仍將是今后命題的熱點,定值、最值、范圍問題將有所加強;利用直線、弦長、圓錐曲線三者的關(guān)系組成的各類試題是解析幾何中長盛不衰的主題,其中求解與相交弦有關(guān)的綜合題仍是今后命題的重點;與其它知識的交匯(如向量、不等式)命題將是今后高考命題的一個新的重點、熱點.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案