【題目】已知函數(shù)f(x)=4cosxsin(x+)-1.
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)將y=f(x)圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度,得到y=g(x)的圖象.若g(x)在(0,m)內(nèi)是單調(diào)函數(shù),求實(shí)數(shù)m的最大值.
【答案】(1)最小正周期為π,減區(qū)間為[kπ+,kπ+],k∈Z.(2).
【解析】
(1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性和單調(diào)性求得f(x)的最小正周期和單調(diào)遞減區(qū)間.
(2)利用函數(shù)y=Asin(ωx+)的圖象變換規(guī)律,求得g(x)的解析式,再利用正弦函數(shù)的單調(diào)性,求得m的最大值.
(1)依題意,得函數(shù)f(x)=4cosxsin(x)﹣1=4cosx(sinxcosx)﹣1sin2x+2cos2x﹣1
=2(sin2xcos2x)=2sin(2x).
它的最小正周期為π.
令2kπ2x2kπ,求得kπx≤kπ,
故函數(shù)的減區(qū)間為[kπ,kπ],k∈Z.
(2)將y=f(x)圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度,得到y=g(x)=2sin(2x)的圖象.
若g(x)在(0,m)內(nèi)是單調(diào)函數(shù),則g(x)在(0,m)內(nèi)是單調(diào)增函數(shù),
∴2m,求得m,故m的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)在內(nèi)有極值.
(1)求實(shí)數(shù)a的取值范圍;
(2)若x1∈(0,1),x2∈(1,+∞).求證:f(x2)-f(x1)>e+2-.注:e是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,且有2sinBcosA=sinAcosC+cosAsinC. (Ⅰ)求角A的大。
(Ⅱ)若b=2,c=1,D為BC的中點(diǎn),求AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校600名文科學(xué)生參加了4月25日的三調(diào)考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、外語(yǔ)情況,利用隨機(jī)數(shù)表法從抽取100名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,將學(xué)生編號(hào)為000,001,002,…599
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
(1)若從第6行第7列的數(shù)開(kāi)始右讀,請(qǐng)你一次寫(xiě)出最先抽出的5個(gè)人的編號(hào)(上面是摘自隨機(jī)數(shù)表的第4行到第7行);
(2)抽出的100名學(xué)生的數(shù)學(xué)、外語(yǔ)成績(jī)?nèi)缦卤恚?/span>
外語(yǔ) | ||||
優(yōu) | 良 | 及格 | ||
數(shù)學(xué) | 優(yōu) | 8 | m | 9 |
良 | 9 | n | 11 | |
及格 | 8 | 9 | 11 |
若數(shù)學(xué)成績(jī)優(yōu)秀率為35%,求m,n的值;
(3)在外語(yǔ)成績(jī)?yōu)榱嫉膶W(xué)生中,已知m≥12,n≥10,求數(shù)學(xué)成績(jī)優(yōu)比良的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),甲班為實(shí)驗(yàn)班,乙班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,測(cè)試成績(jī)的分組區(qū)間為80,90、90,100、100,110、110,120、120,130,由此得到兩個(gè)班測(cè)試成績(jī)的頻率分布直方圖:
(1)完成下面2×2列聯(lián)表,你能有97.5的把握認(rèn)為“這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說(shuō)明理由;
成績(jī)小于100分 | 成績(jī)不小于100分 | 合計(jì) | |
甲班 | 50 | ||
乙班 |
| 50 | |
合計(jì) | 100 |
(2)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測(cè)試中,甲班的平均分是105.8,請(qǐng)你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分?
附:
,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),則下列結(jié)論正確的有( )
A. 函數(shù)的最大值為2;
B. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);
C. 函數(shù)的圖象左移個(gè)單位可得函數(shù)的圖象;
D. 函數(shù)的圖象與函數(shù)的圖象關(guān)于軸對(duì)稱(chēng);
E. 若實(shí)數(shù)使得方程在上恰好有三個(gè)實(shí)數(shù)解,,,則一定有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若,函數(shù)的最大值為,最小值為,求的值;
(2)當(dāng)時(shí),函數(shù)的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在冬季,由于受到低溫和霜凍的影響,蔬菜的價(jià)格會(huì)隨著需求量的增加而提升.已知某供應(yīng)商向飯店定期供應(yīng)某種蔬菜,其價(jià)格會(huì)隨著日需求量的增加而上升,具體情形統(tǒng)計(jì)如下表所示:
(1)根據(jù)上表中的數(shù)據(jù)進(jìn)行判斷,與哪一個(gè)更適合作為日供應(yīng)量與單價(jià)之間的回歸方程;(給出判斷即可,不必說(shuō)明理由);
(2)根據(jù)(1)的判斷結(jié)果以及參考數(shù)據(jù),建立關(guān)于的回歸方程;
(3)該地區(qū)有個(gè)酒店,其中個(gè)酒店每日對(duì)蔬菜的需求量在以下,個(gè)酒店對(duì)蔬菜的需求量在以上,從這個(gè)酒店中任取個(gè)進(jìn)行調(diào)查,求恰有個(gè)酒店對(duì)蔬菜需求量在以上的概率.
參考公式及數(shù)據(jù):
對(duì)于一組數(shù)據(jù),...,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,
其中:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是在豎直平面內(nèi)的一個(gè)“通道游戲”,圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相通,假設(shè)一個(gè)小彈子在交點(diǎn)處向左或向右是等可能的.若豎直線段有一條的為第一層,有兩條的為第二層,……,依此類(lèi)推,現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動(dòng).則該小彈子落入第四層從左向右數(shù)第3個(gè)豎直通道的概率是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com