【題目】為了改善市民的生活環(huán)境,長(zhǎng)沙某大型工業(yè)城市決定對(duì)長(zhǎng)沙市的1萬家中小型化工企業(yè)進(jìn)行污染情況摸排,并出臺(tái)相應(yīng)的整治措施.通過對(duì)這些企業(yè)的排污口水質(zhì),周邊空氣質(zhì)量等的檢驗(yàn),把污染情況綜合折算成標(biāo)準(zhǔn)分100分,發(fā)現(xiàn)長(zhǎng)沙市的這些化工企業(yè)污染情況標(biāo)準(zhǔn)分基本服從正態(tài)分布N(50,162),分值越低,說明污染越嚴(yán)重;如果分值在[50,60]內(nèi),可以認(rèn)為該企業(yè)治污水平基本達(dá)標(biāo).
(Ⅰ)如圖為長(zhǎng)沙市的某工業(yè)區(qū)所有被調(diào)査的化工企業(yè)的污染情況標(biāo)準(zhǔn)分的頻率分布直方圖,請(qǐng)計(jì)算這個(gè)工業(yè)區(qū)被調(diào)査的化工企業(yè)的污染情況標(biāo)準(zhǔn)分的平均值,并判斷該工業(yè)區(qū)的化工企業(yè)的治污平均值水平是否基本達(dá)標(biāo);
(Ⅱ)大量調(diào)査表明,如果污染企業(yè)繼續(xù)生產(chǎn),那么標(biāo)準(zhǔn)分低于18分的化工企業(yè)每月對(duì)周邊造成的直接損失約為10萬元,標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè)每月對(duì)周邊造成的直接損失約為4萬元.長(zhǎng)沙市決定關(guān)停80%的標(biāo)準(zhǔn)分低于18分的化工企業(yè)和60%的標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè),每月可減少的直接損失約有多少?
(附:若隨機(jī)變量,則, ,)
【答案】(Ⅰ)基本達(dá)標(biāo);(Ⅱ)5092萬元.
【解析】
(Ⅰ )利用頻率分布直方圖計(jì)算平均數(shù);(Ⅱ)利用正態(tài)分布分別計(jì)算標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè)與標(biāo)準(zhǔn)分低于18分的化工企業(yè)的概率,從而得到結(jié)果.
(Ⅰ)該工業(yè)區(qū)被調(diào)査的化工企業(yè)的污染情況標(biāo)準(zhǔn)分的平均值:
,
故該工業(yè)區(qū)的化工企業(yè)的治污平均值水平基本達(dá)標(biāo);
(Ⅱ)化工企業(yè)污染情況標(biāo)準(zhǔn)分基本服從正態(tài)分布N(50,162)
標(biāo)準(zhǔn)分在[18,34)內(nèi)的概率,
∴60%的標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè),每月可減少的直接損失為:
萬元,
標(biāo)準(zhǔn)分低于18分的概率,,
∴萬元
故長(zhǎng)沙市決定關(guān)停80%的標(biāo)準(zhǔn)分低于18分的化工企業(yè)和60%的標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè),每月可減少的直接損失約有
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)(,)
(1)設(shè),求的單調(diào)區(qū)間;
(2)設(shè)為導(dǎo)數(shù),
(i)證明:當(dāng),時(shí),;
(ii)設(shè)關(guān)于的方程的根為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖,M是圖象的一個(gè)最低點(diǎn),圖象與x軸的一個(gè)交點(diǎn)的坐標(biāo)為,與y軸的交點(diǎn)坐標(biāo)為.
(1)求A,,的值;
(2)若關(guān)于x的方程在上有一解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在零點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)約資源和保護(hù)環(huán)境是中國(guó)的基本國(guó)策.某化工企業(yè),積極響應(yīng)國(guó)家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第n次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中n是指改良工藝的次數(shù).
(1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;
(2)依據(jù)國(guó)家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進(jìn)行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達(dá)標(biāo).
(參考數(shù)據(jù):取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】折紙是一項(xiàng)藝術(shù),可以折出很多數(shù)學(xué)圖形.將一張圓形紙片放在平面直角坐標(biāo)系中,圓心B(-1,0),半徑為4,圓內(nèi)一點(diǎn)A為拋物線的焦點(diǎn).若每次將紙片折起一角,使折起部分的圓弧的一點(diǎn)始終與點(diǎn)A重合,將紙展平,得到一條折痕,設(shè)折痕與線段B的交點(diǎn)為P.
(Ⅰ)將紙片展平后,求點(diǎn)P的軌跡C的方程;
(Ⅱ)已知過點(diǎn)A的直線l與軌跡C交于R,S兩點(diǎn),當(dāng)l無論如何變動(dòng),在AB所在直線上存在一點(diǎn)T,使得所在直線一定經(jīng)過原點(diǎn),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù)
(1)求k的值;
(2)若函數(shù)的圖象與直線沒有交點(diǎn),求b的取值范圍;
(3)設(shè),若函數(shù)與的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在海岸線l一側(cè)P處有一個(gè)美麗的小島,某旅游公司為方便登島游客,在l上設(shè)立了M,N兩個(gè)報(bào)名接待點(diǎn),P,M,N三點(diǎn)滿足任意兩點(diǎn)間的距離為公司擬按以下思路運(yùn)作:先將M,N兩處游客分別乘車集中到MN之間的中轉(zhuǎn)點(diǎn)Q處點(diǎn)Q異于M,N兩點(diǎn),然后乘同一艘游輪由Q處前往P島據(jù)統(tǒng)計(jì),每批游客報(bào)名接待點(diǎn)M處需發(fā)車2輛,N處需發(fā)車4輛,每輛汽車的運(yùn)費(fèi)為20元,游輪的運(yùn)費(fèi)為120元設(shè),每批游客從各自報(bào)名點(diǎn)到P島所需的運(yùn)輸總成本為T元.
寫出T關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;
問:中轉(zhuǎn)點(diǎn)Q距離M處多遠(yuǎn)時(shí),T最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體是側(cè)棱與底面邊長(zhǎng)都相等的正三棱錐,它的對(duì)棱互相垂直.有一個(gè)如圖所示的正四面體,E,F,G分別是棱AB,BC,CD的中點(diǎn).
(1)求證:面EFG;
(2)求異面直線EG與AC所成角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com