13.已知|x-1|≤1,|y-2|≤1.
(1)求y的取值范圍;
(2)若對任意實數(shù)x,y,|x-2y+2a-1|≤3成立,求實數(shù)a的值.

分析 (1)去掉絕對值,可求y的取值范圍;
(2)若對任意實數(shù)x,y,|x-2y+2a-1|≤3成立,則3+2|a-2|≤3,即可求實數(shù)a的值.

解答 解:(1)由|y-2|≤1,可得-1≤y-2≤1,
∴1≤y≤3.
(2)|x-2y+2a-1|=|x-1-2y+4+2a-4|≤|x-1|+2|y-2|+2|a-2|≤1+2+2|a-2|,
∴3+2|a-2|≤3,
∴|a-2|≤0,
∴a=2.

點評 本題考查絕對值三角不等式,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.我們知道,任意兩個連續(xù)的正整數(shù)的積一定能被2整除,任意三個連續(xù)的正整數(shù)的積一定能被6整除,那么,任意五個連續(xù)的正整數(shù)的積一定能被哪一個正整數(shù)整除呢?以此為依據(jù)你認為:當n為大于2的整數(shù)時,n5-5n3+4n能否被120整除?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知△ABC的三個頂點在橢圓4x2+5y2=6上,其中A,B兩點關(guān)于原點O對稱,設(shè)直線AC的斜率為k1,直線BC的斜率為k2.則k1k2的值為( 。
A.-$\frac{5}{4}$B.-$\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=lg(x+1),若f(a)=1,則a=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-2|-|x-5|.
(1)求函數(shù)f(x)的最值;
(2)若?x∈R,f(x)≥t2-$\frac{7}{2}$t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,已知曲線C:$\left\{\begin{array}{l}x=6cosα\\ y=3sinα\end{array}$(α為參數(shù)),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)若點A,B為曲線C上的兩點,且OA⊥OB,求|OA|•|OB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知f(x)=|x-1|+|x+a|,g(a)=a2-a-2.
(1)若a=3,解關(guān)于x的不等式f(x)>g(a)+2;
(2)當x∈[-a,1]時恒有f(x)≤g(a),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.若一圓經(jīng)過直線l:2x+y+4=0和圓C:x2+y2+2x-4y+1=0的交點,求:
(1)面積最小的圓的方程;
(2)過點(2,-1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{x}{{ln({ax})+2}}$(a≠0).
(1)若a=2,求曲線y=f(x)在點(${\frac{1}{2}$,f(${\frac{1}{2}}$))處的切線方程;
(2)當a>0時,求f(x)的最小值與最大值.

查看答案和解析>>

同步練習冊答案