已知橢圓
的離心率為
,F(xiàn)為橢圓在
x軸正半軸上的焦點,M、N兩點在橢圓C上,且
,定點A(-4,0).
(1)求證:當(dāng)
時.,
;
(2)若當(dāng)
時有
,求橢圓C的方程;
(3)在(2)的條件下,當(dāng)M、N兩點在橢圓C運動時,當(dāng)
的值為6
時, 求出直線MN的方程.
(1)見解析
(2)橢圓C的方程為
(3)直線的MN方程為
,或
。
(1)設(shè)
,
則
,
當(dāng)
時,
,
由M,N兩點在橢圓上,
若
,則
(舍去),
(4分)
。(5分)
(2)當(dāng)
時,不妨設(shè)
(6分)
又
,
,(8分)
橢圓C的方程為
。 (9分)
(3)因為
=6
, (10分)
由(2)知點F(2,0), 所以|AF|="6, " 即得|y
M-y
N|=
(11分)
當(dāng)MN⊥x軸時, |y
M-y
N|=|MN|=
, 故直線MN的斜率存在, (12分)
不妨設(shè)直線MN的方程為
聯(lián)立
,得
,
=
, 解得k=±1。
此時,直線的MN方程為
,或
。 (14分)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知定圓
圓心為
A,動圓
M過點
B(1,0)且和圓
A相切,動圓的圓心
M的軌跡記為
C.
(I)求曲線
C的方程;
(II)若點
為曲線
C上一點,求證:直線
與曲線
C有且只有一個交點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)橢圓
上一點
P到其左焦點的距離為3,到右焦點的距離為1,則
P點到右準(zhǔn)線的距離為
A. 6 | B. 2 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
中心在坐標(biāo)原點,焦點在x軸上的橢圓,它的離心率為
,與直線x+y-1=0相交于兩點M、N,且以
為直徑的圓經(jīng)過坐標(biāo)原點.求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
F1、
F2分別為橢圓
C:
=1(
a>
b>0)的左、右兩個焦點.
(1)若橢圓
C上的點
A(1,
)到
F1、
F2兩點的距離之和等于4,寫出橢圓
C的方程和焦點坐標(biāo);
(2)設(shè)點P是(1)中所得橢圓上的動點,當(dāng)P在何位置時,
最大,說明理由,并求出最大值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知A.B是橢圓
上兩點,O是坐標(biāo)原點,定點
,向量
.
在向量
方向上的投影分別是m.n ,且
7mn ,動點P滿足
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)設(shè)過點E的直線l與C交于兩個不同的點M.N,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
求過點P(3,0)且與圓x2+6x+y2-91=0相內(nèi)切的動圓圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
請閱讀以下材料,然后解決問題:
①設(shè)橢圓的長半軸長為
a,短半軸長為
b,則橢圓的面積為
ab②我們把由半橢圓C
1:
+
="1" (x≤0)與半橢圓C
2:
+
="1" (x≥0)合成的曲線稱作“果圓”,其中
=
+
,
a>0,b>c>0
如右上圖,設(shè)點
F0,
F1,
F2是相應(yīng)橢圓的焦點,
A1,
A2和
B1,
B2是“果圓”與
x,
y軸的交點,若△
F0 F1 F2是邊長為1的等邊三角形,則上述“果圓”的面積為
。
查看答案和解析>>