如圖,動(dòng)物園要圍成相同的長(zhǎng)方形虎籠四間,一面可利用原有的墻,其他各面用鋼筋網(wǎng)圍成.
(1)現(xiàn)有可圍36米長(zhǎng)網(wǎng)的材料,每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使每間虎籠面積最大?
(2)若使每間虎籠面積為24 m2,則每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使圍成四間虎籠的鋼筋總長(zhǎng)度最小?
解:(1)設(shè)每間虎籠長(zhǎng)為x米,寬為y米,則由條件知4x+6y=36,即2x+3y=18. 設(shè)每間虎籠的面積為S,則S=xy. 方法一:由于2x+3y≥2=2, ∴2≤18,得xy≤,即S≤. 當(dāng)且僅當(dāng)2x=3y時(shí)等號(hào)成立. 由解得 故每間虎籠長(zhǎng)為4.5 m,寬為3 m時(shí),可使面積最大. 方法二:由2x+3y=18,得x=9-y. ∵x>0,∴0<y<6.S=xy=(9-y)y=(6-y)y. ∵0<y<6,∴6-y>0.∴S≤[]2=. 當(dāng)且僅當(dāng)6-y=y(tǒng),即y=3時(shí),等號(hào)成立,此時(shí)x=4.5.故每間虎籠長(zhǎng)4.5 m,寬3 m時(shí),可使面積最大. (2)由條件知S=xy=24.設(shè)鋼筋總長(zhǎng)為l,則l=4x+6y. 方法一:∵2x+3y≥2=2=24, ∴l=4x+6y=2(2x+3y)≥48,當(dāng)且僅當(dāng)2x=3y時(shí)等號(hào)成立. 由解得 故每間虎籠長(zhǎng)6 m,寬4 m時(shí),可使鋼筋總長(zhǎng)最。 方法二:由xy=24,得x=. ∴l=4x+6y=+6y=6(+y)≥6×=48,當(dāng)且僅當(dāng)=y(tǒng),即y=4時(shí),等號(hào)成立,此時(shí)x=6. 故每間虎籠長(zhǎng)6 m,寬4 m時(shí),可使鋼筋總長(zhǎng)最。 思路解析:設(shè)每間虎籠長(zhǎng)為x m,寬為y m,則問(wèn)題(1)是在4x+6y=36的前提下求xy的最大值;而問(wèn)題(2)則是在xy=24的前提下來(lái)求4x+6y的最小值.因此,使用極值定理解決. |
在使用極值定理求函數(shù)的最大值或最小值時(shí),要注意: (1)x,y都是正數(shù); (2)xy(或x+y)為定值; (3)x與y必須能夠相等,特別情況下,還要根據(jù)條件構(gòu)造滿足上述三個(gè)條件的結(jié)論. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:訓(xùn)練必修五數(shù)學(xué)人教A版 人教A版 題型:044
如圖,動(dòng)物園要圍成相同的長(zhǎng)方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網(wǎng)圍成.
(1)現(xiàn)有可圍36米長(zhǎng)的鋼筋材料,每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使每間虎籠面積最大?
(2)若使每間虎籠面積為24 m2,則每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使圍成四間虎籠的鋼筋總長(zhǎng)度最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省唐山市遷安市高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com