【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹(shù)的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過(guò)5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水蜜桃樹(shù)獲得的利潤(rùn)為(單位:百元).

(1)求利潤(rùn)函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時(shí),該水蜜桃樹(shù)獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】(1)見(jiàn)解析(2)當(dāng)投入的肥料費(fèi)用為300元時(shí),種植該果樹(shù)獲得的最大利潤(rùn)是4300元.

【解析】試題分析:(1)根據(jù)利潤(rùn)等于收入減成本列式: ,投入的肥料費(fèi)用不超過(guò)5百元及實(shí)際意義得定義域,(2)利用基本不等式求最值:先配湊: ,再根據(jù)一正二定三相等求最值.

試題解析:解:(1) ).

(2)

.

當(dāng)且僅當(dāng)時(shí),即時(shí)取等號(hào).

.

答:當(dāng)投入的肥料費(fèi)用為300元時(shí),種植該果樹(shù)獲得的最大利潤(rùn)是4300元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,B=
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),a= ,求f(A)的最大值及此時(shí)△ABC的外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐A﹣BCD中,E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點(diǎn),則當(dāng)AC,BD滿足條件 時(shí),四邊形EFGH為菱形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的t=0.01,則輸出的n=(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體中,平面平面, , , 分別為, 的中點(diǎn), .

(1)求證: 平面;

(2)若上任一點(diǎn),證明平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在數(shù)列中,若為常數(shù))則稱為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的有關(guān)判斷( )

①若是“等方差數(shù)列”,在數(shù)列 是等差數(shù)列;

是“等方差數(shù)列”;

③若是“等方差數(shù)列”,則數(shù)列為常)也是“等方差數(shù)列”;

④若既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.

其中正確命題的個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出40個(gè)數(shù):1,2,4,7,11,16,…,要計(jì)算這40個(gè)數(shù)的和,如圖給出了該問(wèn)題的程序框圖,那么框圖①處和執(zhí)行框②處可分別填入( )

A. ; B.

C. ; D. ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 所在平面互相垂直,且, 分別為AC、DC、AD的中點(diǎn)

1)求證: 平面BCG;

2)求三棱錐D-BCG的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.
(1)若A∩B={2},求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案