分析 由已知利用三角形面積公式可求AC,進(jìn)而利用余弦定理即可求得BC的值.
解答 解:∵△ABC的面積為$5\sqrt{3},A=\frac{π}{6},AB=5$,
∴5$\sqrt{3}$=$\frac{1}{2}$×AC×5×sin$\frac{π}{6}$,解得:AC=4$\sqrt{3}$,
∴由余弦定理可得:BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•sinA}$=$\sqrt{{5}^{2}+(4\sqrt{3})^{2}-2×5×4\sqrt{3}×\frac{\sqrt{3}}{2}}$=$\sqrt{13}$.
故答案為:$\sqrt{13}$.
點評 本題主要考查了三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,-3} | B. | {1,0} | C. | {1,3} | D. | {1,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=2sin(2x-\frac{π}{4})$ | B. | $y=2sin(2x-\frac{π}{3})$ | C. | $y=2sin(2x+\frac{π}{4})$ | D. | $y=2sin(2x+\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com