【題目】下列結(jié)論正確的是( )

A. 歸納推理是由一般到個(gè)別的推理 B. 演繹推理是由特殊到一般的推理

C. 類比推理是由特殊到特殊的推理 D. 合情推理是演繹推理

【答案】C

【解析】分析:直接利用歸納推理、演繹推理、類比推理和合情推理的定義分析判斷.

詳解:對(duì)于A選項(xiàng),由于歸納推理是從個(gè)別到一般的推理,所以A不正確;

對(duì)于B選項(xiàng),由于演繹推理是從一般到特殊的推理,所以B不正確;

對(duì)于C選項(xiàng),由于類比推理是從特殊到特殊的推理,所以C正確;

對(duì)于D選項(xiàng),由于合情推理是歸納推理和類比推理,所以D不正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是一個(gè)2×2列聯(lián)表,則表中a、b的值分別為 ( )


y1

y2

合計(jì)

x1

a

21

73

x2

2

25

27

合計(jì)

b

46

100

A. 94、96 B. 52、50

C. 52、54 D. 54、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2bxc中,ac0,則函數(shù)的零點(diǎn)個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè)

C. 0個(gè) D. 無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,設(shè),若對(duì)任意

恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,城市缺水尤為突出.某市為了制定合理的節(jié)水方案,從該市隨機(jī)調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.

1)求圖中的值并估計(jì)樣本的眾數(shù);

2)設(shè)該市計(jì)劃對(duì)居民生活用水試行階梯水價(jià),即每位居民用水量不超過(guò)噸的按2元/噸收費(fèi),超過(guò)噸不超過(guò)2噸的部分按4元/噸收費(fèi),超過(guò)2噸的部分按照10元/噸收費(fèi).

用樣本估計(jì)總體,為使75%以上居民在該月的用水價(jià)格不超過(guò)4元/噸,至少定為多少?

假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)時(shí),估計(jì)該市居民該月的人均水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓的右焦點(diǎn)為,離心率,過(guò)點(diǎn)且垂直于軸的直線被橢圓截得的弦長(zhǎng)為1.

)求橢圓的方程;

)記橢圓的上,下頂點(diǎn)分別為A,B,設(shè)過(guò)點(diǎn)的直線與橢圓分別交于點(diǎn),求證:直線必定過(guò)一定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是

A.自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系

B.在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強(qiáng)

C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.在回歸分析中,為0.98的模型比為0.80的模型擬合的效果好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正整數(shù)排成下表:

1

2 3 4

5 6 7 8 9

10 11 12 13 14 15 16

……………

則在表中數(shù)字2017出現(xiàn)在( )

A. 第44行第80列 B. 第45行第80列 C. 第44行第81列 D. 第45行第81列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿足),且

(1)求的解析式;

(2)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)若關(guān)于的方程有區(qū)間上有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案