設關于正整數(shù)n的函數(shù)f(n)=
12•1+22•3+…n2•(2n-1)
n(n+1)

(Ⅰ)求f(1)、f(2)、f(3);
(Ⅱ)是否存在常數(shù)a,b,c使得f(n)=an2+bn+c對一切自然數(shù)n都成立?并證明你的結論.
考點:數(shù)學歸納法,歸納推理
專題:等差數(shù)列與等比數(shù)列,點列、遞歸數(shù)列與數(shù)學歸納法
分析:(Ⅰ)通過已知條件,直接求解f(1)、f(2)、f(3);
(Ⅱ)先假設存在符合題意的常數(shù)a,b,c,再令n=1,n=2,n=3構造三個方程求出a,b,c,再用用數(shù)學歸納法證明成立,證明時先證:①當n=1時成立.②再假設n=k(k≥1)時,成立,即
12•1+22•3+…n2•(2n-1)
n(n+1)
=an2+bn+c,再遞推到n=k+1時,成立即可.
解答: 解:(Ⅰ)函數(shù)f(n)=
12•1+22•3+…n2•(2n-1)
n(n+1)
,f(1)=
1
2
;f(2)=
13
6
;f(3)=
19
6
;
(Ⅱ)假設存在符合題意的常數(shù)a,b,c,由(Ⅰ)可得:
a+b+c=
1
2
4a+2b+c=
13
6
9a+3b+c=
29
6
,解得:a=
1
2
,b=
1
6
,c=-
1
6
;
證明:①的n=1,2,3時已經(jīng)證明等式成立;
②假設n=k(k≥3)時,等式成立,即f(k)=
1
6
(3k2+k-1)

則當n=k+1時,
f(k+1)=
12•1+22•3+…+k2•(2k-1)+(k+1)2(2k+1)
(k+1)(k+2)

=
12•1+22•3+…+k2•(2k-1)
(k+1)(k+2)
+
(k+1)2(2k+1)
(k+1)(k+2)

=
k
k+2
2k2+k-1
6
+
(k+1)(2k+1)
k+2

=
3k3+13k2+17k+6
6(k+2)

=
1
6(k+2)
(k+2)(3k2+7k+3)

=
1
6
[3(k+1)2+(k+1)-1]

∴當n=k+1時,等式也成立.
綜上所述,當a=
1
2
,b=
1
6
,c=-
1
6
時,題設的等式對于一切正整數(shù)n都成立.
點評:第(Ⅰ)題主要考查遞推公式的應用,第(Ⅱ)題主要考查研究存在性問題和數(shù)學歸納法,對存在性問題先假設存在,再證明是否符合條件.數(shù)學歸納法的關鍵是遞推環(huán)節(jié),要符合假設的模型才能成立.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x3-3x的極大值為M極小值為N,則M+N=( 。
A、)4B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,曲線C1:ρ(
2
cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個交點在極軸上,則a等于( 。
A、
3
2
B、
1
2
C、
2
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={1,2,3,4,5},集合A={1,2,3},則∁UA為( 。
A、{1,3,4}
B、{4,5}
C、{0,2,4}
D、{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O的方程為x2+y2=13,直線l:x0x+y0y=13,設點A(x0,y0).
(1)若點A在圓O外,試判斷直線l與圓O的位置關系;
(2)若點A在圓O上,且x0=2,y0>0,過點A作直線AM,AN分別交圓O于M,N兩點,且直線AM和AN的斜率互為相反數(shù).
①若直線AM過點O,求tan∠MAN的值;
②試問:不論直線AM的斜率怎么變化,直線MN的斜率是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)解不等式|2x-1|+|x+1|≥x+2;
(2)已知x,y,z為正實數(shù),求3(x2+y2+z2)+
2
x+y+z
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),A1,A2是橢圓的兩個長軸端點,過右焦點F的直線l:y=k(x-1)交橢圓C于M、N兩點,P為線段MN的中點,當k=1時,OP的斜率為-
3
4

(1)求橢圓C的方程;
(2)記△A1MA2、△A1NA2的面積為S1、S2,若S1=2S2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1,(a>b>0)的右焦點為F(c,0),M為橢圓的上頂點,O為坐標原點,且以焦點和短軸的端點為頂點構成邊長為
2
的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線l交橢圓于P,Q兩點,且使F為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知tanA=
1
4
,tanB=
3
5
,若△ABC的最小邊長為
2

(Ⅰ)求△ABC最大邊的長;
(Ⅱ)若D為線段AC上一點,且AD=2DC,求BD的長.

查看答案和解析>>

同步練習冊答案