【題目】,,,,,六名同學(xué)參加一項(xiàng)比賽,決出第一到第六的名次.,,三人去詢(xún)問(wèn)比賽結(jié)果,裁判對(duì)說(shuō):“你和都不是第一名”;對(duì)說(shuō):“你不是最差的”;對(duì)說(shuō):“你比的成績(jī)都好”,據(jù)此回答六人的名次有_____________種不同情況.

【答案】

【解析】

根據(jù)裁判所說(shuō),對(duì)的名次分兩類(lèi):第一類(lèi)是獲最后一名,再考慮,前面,最后排剩下3人;第二類(lèi)是沒(méi)有獲得最后一名,此時(shí)可同時(shí)考慮,獲得前5名,根據(jù)加法原理即可得到答案.

根據(jù)裁判所說(shuō),對(duì)的名次分兩類(lèi):

第一類(lèi)是獲最后一名,再考慮,,從前5名中選2兩個(gè)名次給,前面有種,

最后排,種,根據(jù)分步計(jì)數(shù)原理,共有種;

第二類(lèi)是沒(méi)有獲得最后一名,此時(shí)可同時(shí)考慮,獲得前5名中的3個(gè)名次

名次在,之前有種,最后排,,種,根據(jù)分步計(jì)數(shù)原理,

共有種;

根據(jù)分類(lèi)計(jì)數(shù)原理,六人的名次共有種不同情況.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線(xiàn)上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線(xiàn)焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分。設(shè)在甲、乙的比賽中,每次發(fā)球,甲發(fā)球得1分的概率為,乙發(fā)球得1分的概率為,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立,甲、乙的一局比賽中,甲先發(fā)球.則開(kāi)始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路汽車(chē)的車(chē)流量(千輛/h)與汽車(chē)的平均速度之間的函數(shù)關(guān)系式為:

1)若要求在該段時(shí)間內(nèi)車(chē)流量超過(guò)2千輛,則汽車(chē)在平均速度應(yīng)在什么范圍內(nèi)?

2)在該時(shí)段內(nèi),若規(guī)定汽車(chē)平均速度不得超過(guò),當(dāng)汽車(chē)的平均速度為多少時(shí),車(chē)流量最大?最大車(chē)流量為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線(xiàn)的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程是.

(1)求直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)點(diǎn).若直與曲線(xiàn)相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)在以,為焦點(diǎn)的橢圓上.

(1)求橢圓的方程;

(2)經(jīng)過(guò)作直線(xiàn)于兩點(diǎn),交軸于點(diǎn),若,且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是一個(gè)“數(shù)陣”:

1

1

1

其中每行都是公差不為0等差數(shù)列,每列都是等比數(shù)列,表示位于第i行第j列的數(shù).

1)寫(xiě)出的值:

2)寫(xiě)出的計(jì)算公式,以及第2020個(gè)1所在“數(shù)陣”中所在的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;

)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足:annN*).若正整數(shù)kk≥5)使得a12+a22+…+ak2a1a2ak成立,則k=(

A.16B.17C.18D.19

查看答案和解析>>

同步練習(xí)冊(cè)答案