15.已知數(shù)列{an}的公差$d=\frac{3}{4}$,${a_{30}}=15\frac{3}{4}$,則a1=-14.

分析 利用等差數(shù)列的通項(xiàng)公式求解即可.

解答 解:數(shù)列{an}的公差$d=\frac{3}{4}$,${a_{30}}=15\frac{3}{4}$,則an=a1+29d,
a1=$15\frac{3}{4}$-29$\frac{3}{4}$=-14.
故答案為:-14.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=tanx.項(xiàng)數(shù)為27的等差數(shù)列{an}滿足an∈(-$\frac{π}{2}$,$\frac{π}{2}$),且公差d≠0.若f(a1)+f(a2)+…+f(a27)=0,則當(dāng)k=14時(shí),f(ak)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知正四面體的棱長為a.
(1)求正四面體的高;
(2)求正四面體內(nèi)切球的半徑和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某地規(guī)定本地最低生活保障x元不低于800元,則這種不等關(guān)系寫成不等式為x≥800.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=asin(x-1)-lnx在區(qū)間(0,1)上為減函數(shù),其中a∈R.
(1)求a的取值范圍;
(2)證明:$sin\frac{1}{2^2}+sin\frac{1}{3^2}+…+sin\frac{1}{{{{(n+1)}^2}}}<ln2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如表的統(tǒng)計(jì)資料:
使用年限x(年)23456
維修費(fèi)用y(萬元)2.23.85.56.57.0
若由資料可知y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸直線方程;
(2)根據(jù)回歸直線方程,估計(jì)使用年限為12年時(shí),維修費(fèi)用是多少?
$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90;$\sum_{i=1}^{5}$xiyi=112.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.過點(diǎn)M(0,1)作直線,使它被兩直線l1:y=$\frac{x}{3}$+$\frac{10}{3}$,l2:y=-2x+8所截得的線段恰好被點(diǎn)M平分,求此直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=48x-x3,x∈[-3,5]
(1)求單調(diào)區(qū)間;
(2)求最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+1,(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)y=f(x)+g(x)在(-∞,0]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案