若函數(shù)f(x)=x2-2x,x∈[-2,4],則函數(shù)f(x)的值域為
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應用
分析:直接把給出的函數(shù)解析式配方,然后由x的范圍求得函數(shù)值域.
解答: 解:f(x)=x2-2x=(x-1)2-1,
∵x∈[-2,4],
∴f(x)min=f(1)=-1;f(x)max=f(-2)=f(4)=8.
∴函數(shù)f(x)的值域為[-1,8].
故答案為:[-1,8].
點評:本題考查了函數(shù)值域的求法,考查了配方法,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在彈性限度內(nèi),拉伸彈簧所用的力與彈簧伸長的長度成正比.如果20N的力能使彈簧伸長4cm,則把彈簧從平衡位置拉長8cm(在彈性限度內(nèi))時所做的功為
 
(單位:焦耳).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(1,1)作圓x2+y2=1的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,公比q=2,且a2+a3=12.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前2015項和S2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得投資收益的范圍是[10,100](單位:萬元).現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過5萬元,同時獎金不超過投資收益的20%.
(Ⅰ)若建立函數(shù)模型y=f(x)制定獎勵方案,請你根據(jù)題意,寫出獎勵模型函數(shù)應滿足的條件;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:(1)y=
1
20
x+1;(2)y=log2x-2.試分析這兩個函數(shù)模型是否符合公司要求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=Asin(ωx+φ),0<φ<π,函數(shù)圖象上最高點為(2,
2
),在此最高點到相鄰最低點間函數(shù)圖象與x軸交于一點(6,0),求次函數(shù)解析式,并求函數(shù)最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,對于函數(shù)y=f(x)的圖象上不重合的兩點A,B,若A,B關于原點對稱,則稱點對(A,B)是函數(shù)y=f(x)的一組“奇點對”(規(guī)定(A,B)與(B,A)是相同的“奇點對”),函數(shù)f(x)=
lg
1
x
(x>0)
sin
1
2
x
(x<0)
的“奇點對”的組數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5共5個數(shù)字中任取一個數(shù)字,取出的數(shù)字為奇數(shù)的概率為( 。
A、
1
2
B、
1
5
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向量
a
=(1,2),
b
=(1,1),且
a
與a+λ
b
的夾角為銳角,則實數(shù)λ滿足(  )
A、λ<-
5
3
B、λ>-
5
3
C、λ>-
5
3
且λ≠0
D、λ<-
5
3
且λ≠-5

查看答案和解析>>

同步練習冊答案