分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出${({x_0}-1)^2}=\frac{a}{3}$,得到f(x0)的解析式,求出f(3-2x0)=f(x0)=f(x1),從而證出結(jié)論即可;
(3)求出f(x)在區(qū)間[0,2]上的取值范圍,求出M的最大值,從而證出結(jié)論即可.
解答 (1)解:由f(x)=(x-1)3-ax-b,可得f'(x)=3(x-1)2-a.
下面分兩種情況討論:
①當(dāng)a≤0時,有f'(x)=3(x-1)2-a≥0恒成立,所以f(x)的單調(diào)遞增區(qū)間為(-∞,+∞);
②當(dāng)a>0時,令f'(x)=0,解得$x=1+\frac{{\sqrt{3a}}}{3}$,或$x=1-\frac{{\sqrt{3a}}}{3}$.
當(dāng)x變化時,f'(x),f(x)的變化情況如下表:
x | $(-∞,1-\frac{{\sqrt{3a}}}{3})$ | $1-\frac{{\sqrt{3a}}}{3}$ | $(1-\frac{{\sqrt{3a}}}{3},1+\frac{{\sqrt{3a}}}{3})$ | $1+\frac{{\sqrt{3a}}}{3}$ | $(1+\frac{{\sqrt{3a}}}{3},+∞)$ |
f'(x) | + | 0 | - | 0 | + |
f(x) | 極大值 | 極小值 |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 垂直 | C. | 相交但不垂直 | D. | 重合 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>0} | B. | {x|x>2} | C. | {x|0<x≤2} | D. | {x|0≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | $(-\frac{1}{2},\frac{1}{2})$ | C. | $(-\sqrt{2},\sqrt{2})$ | D. | $(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$方向上的投影為cosθ | B. | $\overrightarrow{{e}_{1}^{2}}$=$\overrightarrow{{e}_{2}^{2}}$ | ||
C. | ($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)⊥($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$) | D. | |$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$|=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{4}$個單位 | B. | 向右平移$\frac{π}{2}$個單位 | ||
C. | 向左平移$\frac{π}{4}$個單位 | D. | 向左平移$\frac{π}{2}$個單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com