【題目】已知三棱錐P-ABC的四個頂點在球O的球面上,PA=PB=PC,△ABC是邊長為的正三角形,E,F分別是PA,AB的中點,∠CEF=90°.則球O的體積為( )
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】足球,有“世界第一運動的美譽,是全球體育界最具影響力的單項體育運動之一.足球傳球是足球運動技術之一,是比賽中組織進攻、組織戰(zhàn)術配合和進行射門的主要手段.足球截球也是足球運動技術的一種,是將對方控制或傳出的球占為己有,或破壞對方對球的控制的技術,是比賽中由守轉攻的主要手段.這兩種運動技術都需要球運動員的正確判斷和選擇.現(xiàn)有甲、乙兩隊進行足球友誼賽,A、B兩名運動員是甲隊隊員,C是乙隊隊員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時B沿北偏西30°方向以10m/s的速度前往接球,C同時也以10m/s的速度前去截球.假設球與B、C都在同一平面運動,且均保持勻速直線運動.
(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請說明理由.
(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖中的幾何體是由兩個有共同底面的圓錐組成.已知兩個圓錐的頂點分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點,B為底面圓周上的動點(不與A重合).下列四個結論:
①三棱錐體積的最大值為;
②直線PB與平面PAQ所成角的最大值為;
③當直線BQ與AP所成角最小時,其正弦值為;
④直線BQ與AP所成角的最大值為;
其中正確的結論有___________.(寫出所有正確結論的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,定義域為上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個問題.
(1)求的解析式;
(2)若關于的方程有三個不同解,求的取值范圍;
(3)若,求的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù). 為實數(shù),且,記由所有組成的數(shù)集為.
(1)已知,求;
(2)對任意的,恒成立,求的取值范圍;
(3)若,,判斷數(shù)集中是否存在最大的項?若存在,求出最大項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,假命題為( )
A.存在四邊相等的四邊形不是正方形
B.z1 , z2∈C,z1+z2為實數(shù)的充分必要條件是z1 , z2互為共軛復數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N* , + +…+ 都是偶數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一位同學家里開了一個小賣部,他為了研究氣溫對熱茶銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出熱茶杯數(shù)與當天氣溫的對比表如下:
氣溫x/℃ | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
熱茶銷售杯數(shù)y/杯 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
(1)畫出散點圖;
(2)你能從散點圖中發(fā)現(xiàn)氣溫與熱茶的銷售杯數(shù)之間關系的一般規(guī)律嗎?
(3)如果近似成線性關系的話,請畫出一條直線來近似地表示這種線性關系;
(4)試求出回歸直線方程;
(5)利用(4)的回歸方程,若某天的氣溫是2 ℃,預測這一天賣出熱茶的杯數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com