若函數(shù)y=
2x-3ax2+4ax+5
的定義域為R,則實數(shù)a的取值范圍是
 
分析:分式函數(shù)的定義域為R,說明對任意x∈R恒有分母不等于0,然后分二次項系數(shù)為0和不為0討論,二次項系數(shù)不等于0時需要判別式小于0.
解答:解:∵函數(shù)y=
2x-3
ax2+4ax+5
的定義域為R,
則對任意實數(shù)x,ax2+4ax+5≠0,
當a=0時顯然成立;
當a≠0時,則△=16a2-20a<0,解得:0<a<
5
4

綜上,實數(shù)a的取值范圍是[0,
5
4
)

故答案為:[0,
5
4
)
點評:本題考查了函數(shù)的定義域及其求法,考查了數(shù)學轉(zhuǎn)化思想方法及分類討論的數(shù)學思想方法,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

有下列命題:
①函數(shù)y=f(-x+2)與y=f(x-2)的圖象關(guān)于y軸對稱;
②若函數(shù)f(x+2010)=x2-2x-1(x∈R),則函數(shù)f(x)的最小值為-2;
③若函數(shù)f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調(diào)遞增,則f(-2)>f(a+1);
④若f(x)=
(3a-1)x+4a,(x<1)
logax,(x≥1)
是(-∞,+∞)上的減函數(shù),則a的取值范圍是(0,
1
3
).
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列五種說法:
①函數(shù)y=f(-x+2)與y=f(x-2)的圖象關(guān)于y軸對稱;
②函數(shù)y=(
1
2
)x2+2x
的值域是[2,+∞);
③若函數(shù)f(x)=log2|x|(a>0,a≠1)在(0,+∞)上單調(diào)遞增,則f(-2)>f(a+1);
④若f(x)=
(3a-1)x+4a,(x<1)
logax,(x≥1)
是(-∞,+∞)上的減函數(shù),則a的取值范圍是(0,
1
3
);
⑤設(shè)方程 2-x=|lgx|的兩個根為x1,x2,則  0<x1x2<1.
其中正確說法的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α終邊上一點P(-3a,4a),且a≠0,那么cosα=-
3
5

③函數(shù)y=cos(2x-
π
3
)
的圖象的一個對稱中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ為實數(shù),且(
a
b
)∥
c
,則λ=2
⑤設(shè)f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x2-x,則f(1)=-3
其中正確的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=log2(x2-2ax+3a-2)的定義域為R;命題q:方程ax2+2x+1=0有兩個不相等的負數(shù)根,若p∨q是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,正確的命題序號為

①方程組
2x+y=0
x-y=3
的解集為{1,2}
②集合C={
6
3-x
∈z|x∈N*
}={1,2,4,5,6,9}
③f(x)=
x-3
+
2-x
是函數(shù)
④若定義域為[a-1,2a]的函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),則f(0)=1
⑤已知集合A={1,2,3},B={2,3,4,5},則滿足S⊆A且S∩≠∅,B的集合S的個數(shù)為10個
⑥函數(shù)y=
2
x
在定義域內(nèi)是減函數(shù).

查看答案和解析>>

同步練習冊答案