某商店已按每件80元的成本購進某商品1 000件,根據(jù)市場預(yù)測,銷售價為每件100元時可全部售完,定價每提高1元時銷售量就減少5件,若要獲得最大利潤,銷售價應(yīng)定為每件多少元?
考點:函數(shù)模型的選擇與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)提高售價x元,獲得總利潤y元,則單件的利潤為20+x,售量為1000-5x.先利用利潤等于單件的利潤乘以售量,得到函數(shù)y.再通過二次函數(shù)的對稱軸公式求出對稱軸;在對稱軸處取得最大值.
解答: 解:設(shè)提高售價x元,獲得總利潤y元,
由題意得,y=(20+x)(1000-5x)-80×5x=-5x2+500x+20000(0≤x≤200,x∈N),
=-5x2+900x+20 000,
=-5(x-90)2+60 500.
故當(dāng)x=90時,ymax=60500,此時售價為每件190元.
點評:本題的考點是根據(jù)實際問題選擇函數(shù)類型,主要考查將實際問題轉(zhuǎn)化為二次函數(shù)模型、關(guān)鍵是利用二次函數(shù)的對稱軸公式、二次函數(shù)的最值取決于對稱軸和定義域的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用輾轉(zhuǎn)相除法或更相減損術(shù)求得4557與5115的最大公約數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=e2x在點(0,1)處的切線的斜率是( 。
A、e2B、e
C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊與單位圓的交點坐標為(-
1
2
,
3
2
),則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件,求數(shù)列的通項公式an
(1)a1=4,an+1=
n+2
n
an;
(2)a1=-1,an+1=an+2n;
(3)a1=1,an+1=2an+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

五名同學(xué)在“愛心捐助”活動中,捐款數(shù)額為8,10,10,4,6(單位:元),這組數(shù)據(jù)的中位數(shù)是( 。
A、10B、9C、8D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
1
2
,求
sinα+2cosα
sinα-2cosα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-(
1
2
)
x
的定義域是( 。
A、[1,+∞)
B、(-∞,1]
C、[0,+∞)
D、(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M=[0,1],N=[0,1],則如圖能表示M到N的映射的有
 

查看答案和解析>>

同步練習(xí)冊答案