7.已知函數(shù)f(x)=-x3+ax2-x-1在R上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

分析 求導(dǎo)數(shù)得到f′(x)=-3x2+2ax-1,根據(jù)f(x)在R上不是單調(diào)函數(shù)即可得出△=4a2-12>0,解該不等式即可得出實(shí)數(shù)a的取值范圍.

解答 解:f′(x)=-3x2+2ax-1;
∵f(x)在R上不是單調(diào)函數(shù);
∴f′(x)=0有兩個(gè)不同實(shí)數(shù)根;
∴△=4a2-12>0;
解得$a<-\sqrt{3}$,或a$>\sqrt{3}$;
∴實(shí)數(shù)a的取值范圍是$(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$.
故選:C.

點(diǎn)評(píng) 考查根據(jù)導(dǎo)數(shù)符號(hào)判斷函數(shù)單調(diào)性的方法,熟悉二次函數(shù)的圖象,清楚一元二次方程的實(shí)根情況和判別式△取值的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè){an}是遞增等差數(shù)列,前三項(xiàng)的和是12,前三項(xiàng)的積為48,則a3=( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖所示,運(yùn)行流程圖,則輸出的n的值等于( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.?dāng)?shù)列{an}滿(mǎn)足a1=1,an+1=$\sqrt{\frac{{{a_n}^2}}{{4{a_n}^2+1}}}$(n∈N+),
(1)證明$\left\{{\frac{1}{{{a_n}^2}}}\right\}$為等差數(shù)列并求an;
(2)設(shè)Sn=a12+a22+…+an2,bn=S2n+1-Sn,是否存在最小的正整數(shù)m,使對(duì)任意n∈N+,有bn<$\frac{m}{25}$成立?設(shè)若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,AB為圓O的直徑,點(diǎn)C在圓周上(異于點(diǎn)A,B),直線(xiàn)PA垂直于圓O所在的平面,點(diǎn)M是線(xiàn)段PB的中點(diǎn).有以下四個(gè)命題:
①M(fèi)O∥平面PAC;
②PA∥平面MOB;
③OC⊥平面PAC;
④平面PAC⊥平面PBC.
其中正確的命題的序號(hào)是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖所示,正方體 ABCD-A1B1C1D1中,M.N分別為棱 C1D1,C1C的中點(diǎn),有以下四個(gè)結(jié)論:①直線(xiàn)AM與C1C是相交直線(xiàn);  
②直線(xiàn)AM與BN是平行直線(xiàn);
③直線(xiàn)BN與MB1是異面直線(xiàn);
④直線(xiàn)MN與AC所成的角為60°.
則其中真命題的是( 。
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=sin(ωx+$\frac{π}{8}$)(x∈R,ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象( 。
A.向左平移$\frac{3π}{4}$個(gè)單位長(zhǎng)度B.向右平移$\frac{3π}{4}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{3π}{16}$個(gè)單位長(zhǎng)度D.向右平移$\frac{3π}{16}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知?jiǎng)訄AP與圓F1:(x+2)2+y2=(2$\sqrt{7}$+3)2 相內(nèi)切,且與圓F2:(x-2)2+y2=9相內(nèi)切,記圓心P的軌跡為曲線(xiàn)C;設(shè)M為曲線(xiàn)C上的一個(gè)不在x軸上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)F2作OM的平行線(xiàn)交曲線(xiàn)C于A,B兩個(gè)不同的點(diǎn).
(1)求曲線(xiàn)C的方程;
(2)是否存在常數(shù)λ,使得$\frac{|AB|}{|OM{|}^{2}}$=λ,若能,求出這個(gè)常數(shù)λ.若不能,說(shuō)明理由;
(3)記△MF2A面積為S1,△OF2B面積為S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)f(x)=sinx+3|sinx|+b(x∈[0,2π])恰有三個(gè)不同的零點(diǎn),則b=-2或0.

查看答案和解析>>

同步練習(xí)冊(cè)答案