給出下列四個命題:①
1
0
1-x2
dx
=
π
4
,②α,β都是第三象限角,若cosα>cosβ,則sinα>sinβ,③對于兩個變量之間的相關(guān)系數(shù)r,|r|≤1且|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越小;④設(shè)O為坐標(biāo)原點,A(1,1),若點B滿足
x2+y2-2x-2y+1≥0
1≤x≤2
1≤y≤2
,則
OA
OB
的最小值為2+
2
.其中正確的命題的個數(shù)是( 。
A、0B、1C、2D、3
分析:①根據(jù)定積分的幾何意義可知正確;②根據(jù)三角函數(shù)線,當(dāng)α,β都是第三象限角,若cosα>cosβ,則sinα<sinβ;③對于兩個變量之間的相關(guān)系數(shù)的定義可知正確;④先根據(jù)點B(x,y)滿足
x2+y2≥1
0≤x≤1
0≤y≤1
的平面區(qū)域,再把所求問題轉(zhuǎn)化為求x+y的最小值,借助于線性規(guī)劃知識即可求得結(jié)論.
解答:解:①根據(jù)定積分的幾何意義,表示以原點為圓心,1為半徑在第一象限的面積,故正確;②根據(jù)三角函數(shù)線,當(dāng)α,β都是第三象限角,若cosα>cosβ,則sinα<sinβ,故錯誤;③對于兩個變量之間的相關(guān)系數(shù)的定義可知正確;④x2+y2-2x-2y+1≥0即(x-1)2+(y-1)2≥1,表示以(1,1)為圓心、以1為半徑的圓周及其以外的區(qū)域.
當(dāng)目標(biāo)函數(shù) z=
OA
OB
=x+y
的圖象同時經(jīng)過目標(biāo)區(qū)域上的點(1,2)、(2,1)時,目標(biāo)函數(shù)z=
OA
OB
=x+y
取最小值3,故錯誤.
故選C.
點評:本題主要考查命題真假的判斷,只有一一判斷,是對基礎(chǔ)知識的綜合考查,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為(  )
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是(  )

查看答案和解析>>

同步練習(xí)冊答案