2.兩直線3x+4y-9=0和3x+my+1=0平行,則它們之間的距離為2.

分析 利用平行線的性質(zhì)求出m,利用平行線距離公式求解即可.

解答 解:兩直線3x+4y-9=0和3x+my+1=0平行,可得:m=4,
兩條平行線的距離為:$\frac{|-9-1|}{\sqrt{{3}^{2}+{4}^{2}}}$=2.
故答案為:2.

點評 本題考查平行線之間距離公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),若存在圓心在雙曲線的一條慚近線上且與另一條慚近線及x軸都相切的圓,則雙曲線的慚近線方程是y=$±\sqrt{3}$x,離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若不等式組$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\\{\;}\end{array}\right.$表示的平面區(qū)域是一個三角形,則a的取值范圍為0<a≤1或a≥$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出如下三個命題:
①若“p∧q”為假命題,則p,q均為假命題;
②命題“若a>b,則2a>bb-1”的否命題為“若a≤b,則2a≤2b-1”;
③在△ABC中,“A>B”是“sinA>sinB”的充要條件.
其中不正確命題的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N*),則a2018=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡$\frac{sin(α-3π)cos(2π-α)sin(-α+\frac{3π}{2})}{cos(-π-α)sin(-π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直角坐標平面內(nèi)A、B兩點滿足:①點A、B都在函數(shù)f(x)的圖象上;②點A、B關(guān)于原點對稱,則點對(A,B)是函數(shù)y=f(x)的一個“姊妹點對”,點對(A,B)與(B,A)可看作同一個“姊妹點對”.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{|x-1|+b,x≥0}\\{\;}\end{array}\right.$,若f(x)的“姊妹點對”有兩個,則b的范圍為(  )
A.-1<b≤1B.-1≤b<1C.-1≤b≤1D.-1<b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.求和:1+2+3+…+n+(n+1)=$\frac{(n+1)(n+2)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是同一平面內(nèi)三個向量,其中$\overrightarrow{a}$=(2,1).
(1)若$\overrightarrow$=(1,m),且$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$垂直,求實數(shù)m的值;
(2)若$\overrightarrow{c}$為單位向量,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求向量$\overrightarrow{c}$的坐標.

查看答案和解析>>

同步練習(xí)冊答案