(本小題滿分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對數(shù)的底數(shù)).
(Ⅰ)當a=1時,求過點(1,f(1))處的切線與坐標軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實數(shù)a的取值范圍.
(Ⅰ);(II).
解析試題分析:(Ⅰ)利用導數(shù)先求過點(1,f(1))處的切線的方程,再求切線與坐標軸的交點坐標,易得三角型面積;(II)由得,令,利用導數(shù)求函數(shù)在上的單調(diào)性,便可得結論.
試題解析:(Ⅰ)當時,,,,,
函數(shù)在點處的切線方程為,即, 2分
設切線與x、y軸的交點分別為A,B.
令得,令得,∴,,.
在點處的切線與坐標軸圍成的圖形的面積為. 4分
(Ⅱ)由得,
令,
令, 6分
,∵,∴,在為減函數(shù),
∴ , 8分
又∵,∴∴在為增函數(shù), 10分
,因此只需. 12分
考點:1、利用導數(shù)求切線方程;2、利用導數(shù)求函數(shù)的單調(diào)性;3、導數(shù)運算與函數(shù)的綜合運用.
科目:高中數(shù)學 來源: 題型:解答題
如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排,在路南側沿直線排,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將與接通.已知,,公路兩側排管費用為每米1萬元,穿過公路的部分的排管費用為每米2萬元,設與所成的小于的角為.
(Ⅰ)求矩形區(qū)域內(nèi)的排管費用關于的函數(shù)關系式;
(Ⅱ)求排管的最小費用及相應的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x-ax+(a-1),.
(1)討論函數(shù)的單調(diào)性;(2)若,設,
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(Ⅰ)當時,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的導函數(shù)是,在處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設是曲線上的任意一點.當時,求直線OM斜率的最小值,據(jù)此判斷與的大小關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com