已知直線和圓,設(shè)與直線l0和圓C都相切且半徑最小的圓為圓M,直線l與圓M相交于A,B兩點(diǎn),且圓M上存在點(diǎn)P,使得,其中.
(Ⅰ)求圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)求直線l的方程及相應(yīng)的點(diǎn)P坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓和圓,且圓C與x軸交于A1,A2兩點(diǎn)
(1)設(shè)橢圓C1的右焦點(diǎn)為F,點(diǎn)P的圓C上異于A1,A2的動(dòng)點(diǎn),過原點(diǎn)O作直線PF的垂線交橢圓的右準(zhǔn)線交于點(diǎn)Q,試判斷直線PQ與圓C的位置關(guān)系,并給出證明。
(2)設(shè)點(diǎn)在直線上,若存在點(diǎn),使得(O為坐標(biāo)原點(diǎn)),求的取值范圍。來源:學(xué)+科+網(wǎng)Z+X+X+K]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三第四次(12月)階段性測試數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓和圓:,過橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.
(1)(。┤魣AO過橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點(diǎn)M,N,問當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),是否為定值?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三第一學(xué)期學(xué)情調(diào)研數(shù)學(xué)試卷 題型:解答題
(本小題共16分)
已知橢圓和圓:,過橢圓上一點(diǎn)引圓的兩條切線,切點(diǎn)分別為. (1)①若圓過橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率; ②若橢圓上存在點(diǎn),使得,求橢圓離心率的取值(2)設(shè)直線與軸、軸分別交于點(diǎn),,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年湖北省高三第三次模擬考試(理科)數(shù)學(xué)卷 題型:解答題
(本小題滿分13分)(注意:在試題卷上作答無效)已知橢圓和圓:,過橢圓上一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.
(Ⅰ)(。┤魣A過橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率;
(ⅱ)若橢圓上存在點(diǎn),使得,求橢圓離心率的取值范圍;
(Ⅱ)設(shè)直線與軸、軸分別交于點(diǎn),, 求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com