y=x-
1
5
有如下性質(zhì)那個是正確的( 。
分析:y=x-
1
5
=
1
5x
,知y隨x的增大而減。
解答:解:∵y=x-
1
5
=
1
5x
,
∴y隨x的增大而減小,
y=x-
1
5
只有單調(diào)遞減區(qū)間,
故選B.
點評:本題考查冪函數(shù)的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時要認真審題,仔細解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)利用函數(shù)單調(diào)性的定義證明函數(shù)h(x)=x+
3
x
在[
3
,∞)
上是增函數(shù);
(2)我們可將問題(1)的情況推廣到以下一般性的正確結(jié)論:已知函數(shù)y=x+
t
x
有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,
t
]
上是減函數(shù),在[
t
,+∞)
上是增函數(shù).
若已知函數(shù)f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性質(zhì)求出函數(shù)f(x)的單調(diào)區(qū)間;又已知函數(shù)g(x)=-x-2a,問是否存在這樣的實數(shù)a,使得對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,請說明理由;如存在,請求出這樣的實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
t
x
有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)(0,
t
]上是減函數(shù),在[
t
,+∞)上是增函數(shù).
(1)已知f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域.
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x),若對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質(zhì):若常數(shù)a>0,則該函數(shù)在區(qū)間(0,
a
]
上是減函數(shù),在區(qū)間[
a
,+∞)
上是增函數(shù);函數(shù)y=x2+
b
x2
有如下性質(zhì):若常數(shù)c>0,則該函數(shù)在區(qū)間(0,
4b
]
上是減函數(shù),在區(qū)間[[
4b
,+∞)
上是增函數(shù);則函數(shù)y=xn+
c
xn
(常數(shù)c>0,n是正奇數(shù))的單調(diào)增區(qū)間為
[
2nc
,+∞)
[
2nc
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

y=x-
1
5
有如下性質(zhì)那個是正確的( 。
A.是單調(diào)遞減函數(shù)B.只有單調(diào)遞減區(qū)間
C.是單調(diào)遞增函數(shù)D.只有單調(diào)遞增區(qū)間

查看答案和解析>>

同步練習(xí)冊答案