若函數(shù)f(x)=loga(2-ax)(a>0且a≠1)在區(qū)間(0,
1
2
)上是減函數(shù),則實數(shù)a 的取值范圍( 。
A、(1,4]
B、(1,4)
C、(0,1)∪(1,4)
D、(0,1)
分析:先將函數(shù)f(x)=loga(2-ax)轉(zhuǎn)化為y=logat,t=2-ax,兩個基本函數(shù),再利用復合函數(shù)求解.
解答:解:令y=logat,t=2-ax,
(1)若0<a<1,則函數(shù)y=logat,是減函數(shù),
而t為增函數(shù),需a<0
此時無解.
(2)若a>1,則函數(shù)y=logat,是增函數(shù),則t為減函數(shù),需a>0且2-a×
1
2
≥0
此時,1<a≤4
綜上:實數(shù)a 的取值范圍是(1,4]
故選A
點評:本題主要考查復合函數(shù),關(guān)鍵是分解為兩個基本函數(shù),利用同增異減的結(jié)論研究其單調(diào)性,再求參數(shù)的范圍.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:陜西省漢中地區(qū)2007-2008學年度高三數(shù)學第一學期期中考試試卷(理科) 題型:022

若函數(shù)f(x)=的定義域為M,g(x)=lo(2+x=6x2)的單調(diào)遞減區(qū)間是開區(qū)間N,設(shè)全集U=R,則M∩CU(N)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:汨羅市第三中學2008屆高三第二次月考2、數(shù)學 題型:044

函數(shù)f(x)=lo(x2-2ax+3).

(1)若f(x)的定義域為R,值域為(-∞,-1],試求實數(shù)a的值;

(2)若f(x)在(-∞,1]內(nèi)是增函數(shù),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:蘇教版江蘇省揚州市2007-2008學年度五校聯(lián)考高三數(shù)學試題 題型:044

已知函數(shù)(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是單調(diào)減函數(shù),求實數(shù)m的取值范圍;

(2)設(shè)g(x)=f(x)+lnx,當m≥-2時,求g(x)在上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省莒南一中2008-2009學年度高三第一學期學業(yè)水平階段性測評數(shù)學文 題型:044

設(shè)f(x)=lo的奇函數(shù),a為常數(shù),

(Ⅰ)求a的值;

(Ⅱ)證明:f(x)在(1,+∞)內(nèi)單調(diào)遞增;

(Ⅲ)若對于[3,4]上的每一個x的值,不等式f(x)>()x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案