設(shè)公差不為0的等差數(shù)列{an}的首項(xiàng)為1,且a2,a5,a14構(gòu)成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足+…+=1-,n∈N*,求{bn}的前n項(xiàng)和Tn

(Ⅰ);(Ⅱ)Tn=3-.

解析試題分析:(Ⅰ)主要利用等差、等比的概念來(lái)求;(Ⅱ)可以構(gòu)造新數(shù)列,則+…+=1-為其前項(xiàng)和,通過(guò)可求數(shù)列的通項(xiàng)公式,再根據(jù)可求,然后對(duì)其求和;
試題解析:(Ⅰ) 設(shè)等差數(shù)列{an}的公差為d(d≠0),則
∵a2,a5,a14構(gòu)成等比數(shù)列,
=a2a14,
即(1+4d)2=(1+d)(1+13d),
解得d=0(舍去),或d=2.
∴an=1+(n-1)×2=2n-1.                    4分
(Ⅱ)由已知+…+=1-,n∈N*
當(dāng)n=1時(shí),;
當(dāng)n≥2時(shí),=1--(1-)=
,n∈N*
由(Ⅰ),知an=2n-1,n∈N*,
∴bn,n∈N*
又Tn+…+
Tn+…+
兩式相減,得
Tn+(+…+)-
∴Tn=3-.                         12分
考點(diǎn):等差、等比的基本概念;錯(cuò)位相減求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差,它的前項(xiàng)和為,若,且、、成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足:,的前n項(xiàng)和為
(1)求;
(2)已知數(shù)列的第n項(xiàng)為,若成等差數(shù)列,且,設(shè)數(shù)列的前項(xiàng)和.求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知an是一個(gè)等差數(shù)列,且a2=18,a14=—6.
(1)求an的通項(xiàng)an
(2)求an的前n項(xiàng)和Sn的最大值并求出此時(shí)n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足:,.的前n項(xiàng)和為.
(Ⅰ)求 及;
(Ⅱ)若 ,),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為Sn,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,記數(shù)列的前項(xiàng)和為.求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無(wú)窮數(shù)列、滿足
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無(wú)窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,已知.
(Ⅰ)求;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為等差數(shù)列,為數(shù)列的前項(xiàng)和,已知.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案