【題目】一副直角三角板(如圖1)拼接,將折起,得到三棱錐(如圖2).

(1)若分別為的中點(diǎn),求證: 平面;

(2)若平面平面,求證:平面平面.

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:(1)利用三角形中位線的性質(zhì),可得,由線面平行的判定定理可證明平面;(2)若平面平面,可得平面, 平面,由面面垂直的判定定理可證明

平面平面.

試題解析:(1)因?yàn)?/span>分別為的中點(diǎn),所以

平面, 平面,所以平面.

(2)因?yàn)槠矫?/span>平面,平面平面,

平面 img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/16/7d737b5e/SYS201712291627592128443134_DA/SYS201712291627592128443134_DA.027.png" width="67" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,所以平面,

因?yàn)?/span>平面,所以.

又因?yàn)?/span>, 平面, 平面.

所以平面.

平面,所以平面平面.

【方法點(diǎn)晴】本題主要考查線面平行的判定定理線面垂直的判定定理以及面面垂直的判定定理,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知離心率為的橢圓經(jīng)過點(diǎn),且是頂點(diǎn)均不與橢圓四個(gè)頂點(diǎn)重合的橢圓一個(gè)內(nèi)接四邊形.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,試判斷的面積是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是正數(shù)組成的數(shù)列, ,且點(diǎn) 在函數(shù)的圖象上.

(1)求數(shù)列的通項(xiàng)公式;

(2)若列數(shù)滿足,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)y=3cos(2x﹣ )的圖象,可以將函數(shù)y=3sin2x的圖象( )
A.沿x軸向左平移 單位
B.沿x軸向右平移 單位
C.沿x軸向左平移 單位
D.沿x軸向右平移 單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且,則不能等于(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知a、b、c分別是三內(nèi)角A、B、C所對(duì)應(yīng)的邊長,且b2+c2﹣a2=bc
(1)求角A的大小;
(2)若sin2A+sin2B=sin2C,試判斷△ABC的形狀并求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家擴(kuò)大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷獲得,經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元滿足為常數(shù)).如果不搞促銷活動(dòng),則該產(chǎn)品的年銷量只能是1萬件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均成本的1.5倍(成產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).

(1)求常數(shù),并將該廠家2016年該產(chǎn)品的利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);

(2)該廠家2016年的年促銷費(fèi)用投入多少萬元時(shí),廠家利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一塊直角三角形木板置于平面直角坐標(biāo)系中,已知,點(diǎn)是三角形木板內(nèi)一點(diǎn),現(xiàn)因三角形木板中陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過點(diǎn)的任一直線將三角形木板鋸成.設(shè)直線的斜率為.

(Ⅰ)求點(diǎn)的坐標(biāo)及直線的斜率的范圍;

(Ⅱ)令的面積為,試求出的取值范圍;

(Ⅲ)令(Ⅱ)中的取值范圍為集合,若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 是坐標(biāo)原點(diǎn), 分別為其左右焦點(diǎn), , 是橢圓上一點(diǎn), 的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于兩點(diǎn),且

(i)求證: 為定值;

(ii)求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案