下列雙曲線中,漸近線方程是y=±
3
2
x的是(  )
A、
x2
3
-
y2
2
=1
B、
x2
4
-
y2
9
=1
C、
y2
3
-
x2
2
=1
D、
y2
4
-
x2
9
=1
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:
x2
a2
-
y2
b2
=1的漸近線方程為y=±
b
a
x,
y2
a2
-
x2
b2
=1的漸近線方程為y=±
a
b
x,計算即可得到結(jié)論.
解答: 解:對于A.
x2
3
-
y2
2
=1的漸近線方程為y=±
6
3
x;
對于B.
x2
4
-
y2
9
=1的漸近線方程為y=±
3
2
x;
對于C.
y2
3
-
x2
2
=1的漸近線方程為y=±
6
2
x;
對于D.
y2
4
-
x2
9
=1的漸近線方程為y=±
2
3
x.
故選B.
點評:本題考查雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差為3,若a1,a3,a4成等比數(shù)列,則a2等于( 。
A、-18B、-15
C、-12D、-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a}.
(1)求A∪B;
(2)若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|
x-1
x+1
≥2,x∈Z}的子集個數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:|x2-
1
2
|<2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)ω>0,若f(x)=2sinωx在區(qū)間[0,
π
4
]上單調(diào)遞增,則ω的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期為6π,且f(
π
2
)=
3

(1)求f(x)的解析式;
(2)設(shè)α∈[
π
2
,π],f(3α+π)=
10
13
,f(3β+
2
)=-
6
5
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若
AB
=
a
,
AC
=
b‘

(1)若D為BC上的點,且
BD
=t
BC
,求證:
AD
=(1-t)
a
+t
b
;
(2)若P,Q是線段BC的三等分點,試證:
AP
+
AQ
=
a
+
b
;
(3)若P,Q,S是線段BC的四等分點,試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)

(4)如果A1,A2,A3,…An-1是線段BC的n(n≥3)等分點,你能得到什么結(jié)論?并加以證明.(注:1+2+3+…+n=
n(n+1)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9臺發(fā)動機(jī)分別安裝在甲、乙、丙3個車間內(nèi),每個車間3臺,每臺發(fā)動機(jī)正常工作的概率為
1
2
.若一個車間內(nèi)至少有一臺發(fā)動機(jī)正常工作,則這個車間不需要停產(chǎn)維修,否則需要停產(chǎn)維修.
(1)求甲車間不需要停產(chǎn)維修的概率;
(2)若每個車間維修一次需1萬元(每月至多維修一次),用ξ表示每月維修的費用,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案