(本小題滿分12分)已知是邊長為1的正方體,求:

⑴直線與平面所成角的正切值;
⑵二面角的大;
⑶求點到平面的距離。
解: ⑴連結,∵是正方體
在平面上的射影
就是與平面所成的角

中, 
∴直線與平面所成的角的正切值為
⑵過,垂足為,連結 
,


,


是二面角的平面角
中,,
,即
∴二面角的大小為 
⑶設點到平面的距離為h
   
 
,即到平面的距離為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB=2,M, N分別為PA, BC的中點.
(Ⅰ)證明:MN∥平面PCD;
(Ⅱ)求MN與平面PAC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直棱柱中,底面為正方形,又中點,則異面直線所成的角的余弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊥平面,,且 的中點.
(Ⅰ)求證:∥平面
(Ⅱ)求證:平面BCE⊥平面;
(III) 求此多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間四邊形ABCD中,AD=BC=2,E、F分別是CD、AB的中點,若
EF=,則AD、BC所成的角等于

(第7題圖)

 

A、        B、     C、     D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖正三棱錐中,分別是的中點,,且,則正三棱錐的體積是 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正四棱錐P-ABCD,B1為PB的中點,D1為PD的中點,
則兩個棱錐A-B1CD1,P-ABCD的體積之比是(     )
A.1:4B.3:8C.1:2D.2:3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線,給出下列命題:
①若,則;     ②若
③若;      ④若
⑤若
其中正確命題的序號是_______________(把所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

平面上三條直線,如果這三條直線將平面劃
分為六部分,則實數(shù)的所有取值為     。(將你認為所有正確的序號都填上)
①0      ②    ③1       ④2     ⑤3

查看答案和解析>>

同步練習冊答案