10.設(shè)a=$\frac{1}{2}$,b=log32,c=2${\;}^{\frac{1}{3}}$,則( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

分析 利用對數(shù)和指數(shù)的運算性質(zhì)確定a,b,c的大小關(guān)系即可.

解答 解:a=$\frac{1}{2}$,c=2${\;}^{\frac{1}{3}}$>20=1
$\frac{1}{2}$=log3$\sqrt{3}$<log32<log33=1,
∴c>b>a,
故選:D

點評 本題主要考查對數(shù)的運算法則,利用對數(shù)的單調(diào)性和對數(shù)函數(shù)的圖象和性質(zhì)進行判斷即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列有關(guān)命題的說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“x≠-1,則x2+5x-6=0”的必要不充分條件
C.命題“若x=y,則sinx=siny”的逆否命題為真命題
D.若命題p:?x0∈R,x02-x0+1<0,則¬p:?x0∉R,x02-x0+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且a:b:c=2:3:4,則△ABC中最大角的余弦值是$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.平面直角坐標(biāo)系的原點為O,橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F,直線PQ過F交橢圓于P,Q兩點,且|PF|max•|QF|min=$\frac{a^2}{4}$.
(1)求橢圓的長軸與短軸之比;
(2)如圖,線段PQ的垂直平分線與PQ交于點M,與x軸,y軸分別交于D,E兩點,求$\frac{{{S_{△DFM}}}}{{{S_{△DOE}}}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$<0,則△ABC( 。
A.一定是銳角三角形B.一定是直角三角形
C.一定是鈍角三角形D.是銳角或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知某棱錐的三視圖如圖所示,則該棱錐的表面積為( 。
A.2+$\sqrt{5}$B.3+$\frac{\sqrt{5}}{2}$C.2+$\frac{\sqrt{5}}{2}$D.3+$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的虛軸長為2$\sqrt{2}$,點M(2,1)在C上,平行于OM的直線l交橢圓C于不同的兩點A,B.
(1)求橢圓C的方程;
(2)證明:直線MA,MB與x軸總圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=|x-1|-2|x+a|.
(1)當(dāng)a=1時,求不等式f(x)>1的解集;
(2)若不等式f(x)>0,在x∈[2,3]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分圖象如圖所示,則f(x)=sin($\frac{π}{4}$x+$\frac{3π}{4}$)

查看答案和解析>>

同步練習(xí)冊答案