【題目】【選做題】本題包括A、B、C、D四小題,請選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.

A.[選修4-1:幾何證明選講]

如圖, 分別與圓相切于點(diǎn), , 經(jīng)過圓心,且,求證: .

B.[選修4-2:矩陣與變換]

在平面直角坐標(biāo)系中,已知點(diǎn), , ,先將正方形繞原點(diǎn)逆時針旋轉(zhuǎn),再將所得圖形的縱坐標(biāo)壓縮為原來的一半、橫坐標(biāo)不變,求連續(xù)兩次變換所對應(yīng)的矩陣.

C.[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)).現(xiàn)以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.

D.[選修4-5:不等式選講]

已知為互不相等的正實(shí)數(shù),求證: .

【答案】見解析.

【解析】A.根據(jù)題意,可以考慮證明,又由,從而問題可得證;B.根據(jù)旋轉(zhuǎn)變換矩陣、伸縮變換矩陣以及矩陣乘法的定義進(jìn)行運(yùn)算,問題可得解;C.根據(jù)題意,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,再由參數(shù)方程經(jīng)過消參得到一般方程,再由一般方程化為極坐標(biāo)方程即可;D.根據(jù)題意,可考慮使用分析法進(jìn)行證明即可.

試題解析:A.解:易得,

,

所以.

,

.

B.解:設(shè)將正方形繞原點(diǎn)逆時針旋轉(zhuǎn)所對應(yīng)的矩陣為

.

設(shè)將所得圖形的縱坐標(biāo)壓縮為原來的一半,橫坐標(biāo)不變所對應(yīng)的矩陣為,

,

所以連續(xù)兩次變換所對應(yīng)的矩陣.

C.解:依題意知為參數(shù)),

因?yàn)?/span>

所以,即,

化為極坐標(biāo)方程得,即

所以曲線的極坐標(biāo)方程為.

D.證明:因?yàn)?/span>,

所以要證,

只要證

即要證,

只需證

,故成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合.對于, ,定義之間的距離為

(Ⅰ)寫出中的所有元素,并求兩元素間的距離的最大值;

(Ⅱ)若集合滿足: ,且任意兩元素間的距離均為2,求集合中元素個數(shù)的最大值并寫出此時的集合;

(Ⅲ)設(shè)集合, 中有個元素,記中所有兩元素間的距離的平均值為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6名選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖,為了增加結(jié)果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,只是告知大家,如果某位選手的成績高于90分(不含90分),則直接“晉級”.

(1)求乙班總分超過甲班的概率;

(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分,

請你從平均分和方差的角度來分析兩個班的選手的情況;

主持人從甲乙兩班所有選手成績中分別隨機(jī)抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分

布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如莖葉圖所示,其中一個數(shù)字被污損.

(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率

(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示),

年齡x(歲)

20

30

40

50

周均學(xué)習(xí)成語知識時間y(小時)

2.5

3

4

4.5

由表中數(shù)據(jù),試求線性回歸方程y=bx+a,并預(yù)測年齡為50歲觀眾周均學(xué)習(xí)成語知識時間.

參考公式:a=y-bx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從集合中,抽取三個不同的元素構(gòu)成子集.

(1)求對任意的滿足的概率;

(2)若成等差數(shù)列,設(shè)其公差為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某教研機(jī)構(gòu)隨機(jī)抽取某校20個班級,調(diào)查各班關(guān)注漢字聽寫大賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成時,所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】女共名同學(xué)從左至右排成一排合影,要求左端排男同學(xué),右端排女同學(xué),且女同學(xué)至多有人排在一起,則不同的排法種數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 滿足 (其中 ).

1)求 的表達(dá)式;

2)對于函數(shù) ,當(dāng) 時, ,求實(shí)數(shù) 的取值范圍.

3)當(dāng) 時, 的值為負(fù)數(shù),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2016年1月1日起全國統(tǒng)一實(shí)施全面兩孩政策. 為了解適齡民眾對放開

生二胎政策的態(tài)度,某市選取70后作為調(diào)查對象,隨機(jī)調(diào)查了10人,其中打算生二胎

的有4人,不打算生二胎的有6人.

(1)從這10人中隨機(jī)抽取3人,記打算生二胎的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)若以這10人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率作為概率,從該市70后中隨機(jī)抽取3人,記打算生二胎的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案