函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移個單位后,得到一個偶函數(shù)的圖象,則φ的一個可能的值為( )
A.
B.
C.0
D.
【答案】分析:利用函數(shù)y=Asin(ωx+φ)的圖象變換可得函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移個單位后的解析式,利用其為偶函數(shù)即可求得答案.
解答:解:令y=f(x)=sin(2x+φ),
則f(x+)=sin[2(x+)+φ]=sin(2x++φ),
∵f(x+)為偶函數(shù),
+φ=kπ+,
∴φ=kπ+,k∈Z,
∴當(dāng)k=0時,φ=
故φ的一個可能的值為
故選B.
點評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查三角函數(shù)的奇偶性,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(-2x+
π4
),x∈[0,π]的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)為得到函數(shù)y=sin(π-2x)的圖象,可以將函數(shù)y=sin(2x-
π
3
)的圖象(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x+φ)(0≤φ≤π)是R上的偶函數(shù),則φ的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x=t與函數(shù)y=sin(2x+
π
4
)和y=cos(2x+
π
4
)的圖象分別交于P,Q兩點,則|PQ|的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=
1
2
+
1
2x-1
(x≠0)
是奇函數(shù);
③函數(shù)y=sin(-2x)在區(qū)間[
π
4
4
]
上是減函數(shù);
④函數(shù)y=cos|x|是周期函數(shù);
⑤對于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0.(其中“?”表示“存在”,“?”表示“任意”).
其中錯誤結(jié)論的序號是
.(填寫你認(rèn)為錯誤的所有結(jié)論序號)

查看答案和解析>>

同步練習(xí)冊答案