13.已知函數(shù)f(x)=|x-a|-2.
(Ⅰ)若a=1,求不等式f(x)+|2x-3|>0的解集;
(Ⅱ)若關于x的不等式f(x)<|x-3|恒成立,求實數(shù)a的取值范圍.

分析 (Ⅰ)化簡不等式,利用絕對值的幾何意義求解即可.
(Ⅱ)設f(x)=|x-a|-|x-3|≤|a-3|,轉化不等式為a的不等式,求解即可.

解答 (本大題滿分10分)
解:(Ⅰ)函數(shù)f(x)=|x-a|-2.若a=1,
不等式f(x)+|2x-3|>0,化為:|x-1|+|2x-3|>2.
當x≥$\frac{3}{2}$時,3x>6.解得x>2,
當x∈(1,$\frac{3}{2}$)時,可得-x+2>2,不等式無解;
當x≤1時,不等式化為:4-3x>2,解得x$<\frac{2}{3}$.
不等式的解集為:$(-∞,\frac{2}{3})∪(2,+∞)$…5
(Ⅱ)關于x的不等式f(x)<|x-3|恒成立,可得|x-a|-2<|x-3|
設f(x)=|x-a|-|x-3|,
因為|x-a|-|x-3|≤|a-3|,
所以,f(x)max=|a-3|
即:|a-3|<2
所以,a的取值范圍為(1,5)…10

點評 本題主要考查絕對值不等式的解法,不等式恒成立,體現(xiàn)了轉化、分類討論的數(shù)學思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.若關于x的不等式$({ax-20})lg\frac{2a}{x}≤0$對任意的正實數(shù)x恒成立,則a的取值范圍是( 。
A.[-10,10]B.$[-\sqrt{10},\sqrt{10}]$C.$(-∞,\sqrt{10}]$D.$\left\{{\sqrt{10}}\right\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(2+x),g(x)=ln(2-x)
(1)判斷函數(shù)h(x)=f(x)-g(x)的奇偶性;
(2)求使f(x)≥g(x)成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=lg$\frac{1+ax}{1-2x}({a>0})$是奇函數(shù),則函數(shù)$g(x)={log_{\frac{1}{a}}}({{x^2}-6x+5})$的單調(diào)遞減區(qū)間是(5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.袋子中裝有大小相同的6個小球,2紅4白,現(xiàn)從中有放回的隨機摸球3次,每次摸出1個小球,則至少有2次摸出白球的概率為$\frac{20}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.11月11日在某購物網(wǎng)站消費不超過10000元的2000名網(wǎng)購者中有女士1100名,男士900名.該網(wǎng)站為優(yōu)化營銷策略,根據(jù)性別采用分層抽樣的方法從這2000名網(wǎng)購者中抽取200名進行分析得到下表(消費金額:元)
女士消費情況:
消費金額(0,2000)[2000,4000)[4000,6000)[6000,8000)[8000,10000]
人數(shù)1025      35     35x
男士消費情況:
消費金額(0,2000)[2000,4000)[4000,6000)[6000,8000)[8000,10000]
人數(shù)1530      25y3
(Ⅰ)計算x,y的值,在抽出的200名且消費金額在[8000,10000](單位:元)的網(wǎng)購者中隨機選出2名發(fā)放網(wǎng)購紅包,求選出的兩名網(wǎng)購者都是男士的概率;
(Ⅱ)若消費金額不低于6000元的網(wǎng)購者為“網(wǎng)購達人”,低于6000元的網(wǎng)購者為“非網(wǎng)購達人”,根據(jù)以上數(shù)據(jù)填寫下面2×2列連表,并回答能否在犯錯誤率不超過0.05的前提下,認為“是否為網(wǎng)購達人與性別有關”?
女士男士總計
網(wǎng)購達人
非網(wǎng)購達人
總計
附:
P(K2≥k00.100.050.0250.010.005
k02.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果圓錐曲線$\frac{{x}^{2}}{m-1}+\frac{{y}^{2}}{m+8}$=1的焦距是與m無關的非零常數(shù),那么它的焦點坐標是( 。
A.(0,±3)B.(±3,0)C.(0,±$\sqrt{7}$)D.(±$\sqrt{7}$,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)y=0.5|1-x|+m的圖象與x軸有公共點,則m的取值范圍是( 。
A.-1≤m<0B.m≤-1C.m≥1D.0<m≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,I是全集,A,B是I的子集,則陰影部分表示的集合是A∩(CUB).

查看答案和解析>>

同步練習冊答案