已知雙曲線的中心在原點,焦點在x軸上,一條漸近線方程為y=
3
4
x
,那么該雙曲線的離心率為( 。
分析:設(shè)雙曲線的方程為:
x2
a2
-
y2
b2
=1(a>0,b>0),由
b
a
=
3
4
即可求得該雙曲線的離心率.
解答:解:設(shè)雙曲線的方程為:
x2
a2
-
y2
b2
=1(a>0,b>0),
∵一條漸近線方程為y=
3
4
x
,
b
a
=
3
4
,
b2
a2
=
c2-a2
a2
=
9
16
,
c2
a2
=
25
16

∴該雙曲線的離心率e=
c
a
=
5
4

故選C.
點評:本題考查雙曲線的簡單性質(zhì),考查雙曲線的離心率與a,b,c之間的關(guān)系,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,離心率為
2
,且過點(4,-
10
)
,則雙曲線的標準方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點,焦點為F1(5,0),F(xiàn)2(-5,0),且過點(3,0),
(1)求雙曲線的標準方程.
(2)求雙曲線的離心率及準線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,一條漸近線方程為y=x,且過點(4,-
10
)

(1)求雙曲線方程;
(2)設(shè)A點坐標為(0,2),求雙曲線上距點A最近的點P的坐標及相應(yīng)的距離|PA|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,一條漸近線方程為y=x,且過點(4,-
10
)
,A點坐標為(0,2),則雙曲線上距點A距離最短的點的坐標是
7
,1)
7
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•豐臺區(qū)一模)已知雙曲線的中心在原點,焦點在x軸上,一條漸近線方程為y=
3
4
x
,則該雙曲線的離心率是
5
4
5
4

查看答案和解析>>

同步練習冊答案