分析 求出命題p,q的等價條件,結合充分條件和必要條件的定義建立不等式關系進行求解即可.
解答 解:由命題$p:\frac{{2{x^2}}}{x+1}<1$,得 $\frac{2{x}^{2}-x-1}{x+1}$=$\frac{(2x+1)(x-1)}{x+1}$<0,解之得-$\frac{1}{2}$<x<1或x<-1,
由x2-(2a-1)x+a(a-1)≤0即(x-a)[x-(a-1)]≤0,
解得a-1≤x≤a,
因為¬p是¬q的充分不必要條件,由命題的等價性知,q是p的充分不必要條件,
則$\left\{\begin{array}{l}{a-1>-\frac{1}{2}}\\{a<1}\end{array}\right.$或a<-1,即$\frac{1}{2}$<a<1或a<-1.
則a的取值范圍為:($\frac{1}{2}$,1)∪(-∞,-1).
點評 本題主要考查復合命題與簡單命題之間的關系,利用逆否命題的等價性將¬p是¬q的充分不必要條件,轉化為q是p的充分不必要條件是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=ax | B. | y=xa(a>0且a≠1) | C. | $y={(\frac{1}{2})^x}$ | D. | y=(a-2)ax |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}>lg{a_6}>lg{b_6}$ | B. | $lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{a_6}≥lg{b_6}$ | ||
C. | $lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{b_6}≥lg{a_6}$ | D. | $lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}<lg{a_6}<lg{b_6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2或1 | B. | -2或-$\frac{1}{2}$ | C. | -$\frac{1}{2}$或-1 | D. | -$\frac{1}{2}$或1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com