【題目】已知函數(shù),且.
(1)求函數(shù)的極值;
(2)當(dāng)時,證明:.
【答案】(1)當(dāng)時,函數(shù)有極大值,當(dāng)時,函數(shù)有極小值;(2)證明見解析.
【解析】
試題分析:(1)求極值,可先求得導(dǎo)數(shù),然后通過解不等式確定增區(qū)間,解不等式確定減區(qū)間,則可得極大值和極小值;(2)要證明此不等式,我們首先研究不等式左邊的函數(shù),記,求出其導(dǎo)數(shù),可知在上單調(diào)遞增,在上單調(diào)遞減,,這是時最小值,,這是時的最大值,因此要證明題中不等式,可分類,和分別證明.
試題解析:(1)依題意,,
故,
令,則或; 令,則,
故當(dāng)時,函數(shù)有極大值,當(dāng)時,函數(shù)有極小值
(2)由(1)知,令,
則,
可知在上單調(diào)遞增,在上單調(diào)遞減,令.
① 當(dāng)時,,所以函數(shù)的圖象在圖象的上方.
② 當(dāng)時,函數(shù)單調(diào)遞減,所以其最小值為最大值為2,而,所以函數(shù)的圖象也在圖象的上方.
綜上可知,當(dāng)時,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面程序執(zhí)行后,輸出的值為( )
J=1;
A=0;
while J<5
J=J+1;
A=A+J* J;
end
print(%io(2),J);
A. 4 B. 5
C. 54 D. 55
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的前項和為,且為等差數(shù)列的前三項.
(1)求與數(shù)列的通項公式;
(2)設(shè)數(shù)列的前項和,試問是否存在正整數(shù),對任意的使得?若存在請求出的最大值,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0]時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實數(shù)x的取值范圍是( )
A(,2) B(-2,1) C(-1,2) D(-1,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】50.6,0.65,log0.55的大小順序是( )
A.0.65 < log0.65 < 50.6B.0.65 < 50.6< log0.65
C.log0.65 < 50.6 <0.65D.log0.65 <0.65 < 50.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯誤的是( )
A. 平行于同一條直線的兩個平面平行
B. 平行于同一個平面的兩個平面平行
C. 一個平面與兩個平行平面相交,交線平行
D. 一條直線與兩個平行平面中的一個相交,則必與另一個相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個直角三角形繞其一直角邊所在直線旋轉(zhuǎn)一周,所得的幾何體為( )
A. 一個圓臺 B. 兩個圓錐 C. 一個圓柱 D. 一個圓錐
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列程序運行的結(jié)果為_____.
i=1;
S=0;
while S<=30
S=S+i;
i=i+1;
end
print(%io(2),i);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com