精英家教網 > 高中數學 > 題目詳情

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.

(1)求證:AF∥平面PCE;

(2)若二面角P-CD-B為45°,AD=2,CD=3,求點F到平面PCE的距離.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.
(1)求證:AF∥平面PCE;
(2)若二面角P-CD-B為45°,AD=2,CD=3,求點F到平面PCE的距離;
(3)在(2)的條件下,求PC與底面所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)若二面角P-CD-B為45°,AD=2,CD=3,求點F到平面PCE的距離.

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:044

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是ABPD的中點.

(Ⅰ)求證:AF∥平面PCE;

(Ⅱ)若二面角PCDB45°,AD=2,CD=3,求點F到平面PCE的距離.

 

查看答案和解析>>

科目:高中數學 來源:高中數學綜合題 題型:044

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.

(1)求證:AF∥平面PCE;

(2)若二面角P—CD—B為45°,AD=2,CD=3,求點F到平面PCE的距離.

查看答案和解析>>

同步練習冊答案