【題目】已知橢圓 的左、右焦點分別為,,橢圓的長軸長與焦距之比為,過且斜率不為的直線交于,兩點.

(1)當(dāng)的斜率為時,求的面積;

(2)若在軸上存在一點,使是以為頂點的等腰三角形,求直線的方程.

【答案】(1)12(2)

【解析】

(1)結(jié)合橢圓的基本性質(zhì),分別計算a,b,c的值,代入直線方程,即可。(2)代入直線方程,結(jié)合等腰三角形底邊和高相互垂直,建立等式,計算k,得到直線l的方程,即可。

解:(1)依題意,因,又,得,

所以橢圓的方程為,

設(shè)、,當(dāng)時,直線

將直線與橢圓方程聯(lián)立,

消去得,,解得,,

所以 .

(2)設(shè)直線的斜率為,由題意可知,

,消去得,

恒成立,,線段的中點,

,,

是以為頂點的等腰三角形,則,得,

整理得:.故直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)若,判斷上的單調(diào)性;

(Ⅱ)求函數(shù)上的最小值;

(III)當(dāng)時,是否存在正整數(shù)n,使恒成立?若存在,求出n的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點的直線與橢圓交于兩點,的周長為8,直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)設(shè)是橢圓上兩動點,線段的中點為,的斜率分別為為坐標(biāo)原點),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lmxy=1,若直線l與直線x+mm﹣1)y=2垂直,則m的值為_____,動直線lmxy=1被圓Cx2﹣2x+y2﹣8=0截得的最短弦長為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)上的最大值和最小值;

2)求證:當(dāng)時,函數(shù)的圖象在的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為,,橢圓的長軸長與焦距之比為,過的直線交于,兩點.

(1)當(dāng)的斜率為時,求的面積;

(2)當(dāng)線段的垂直平分線在軸上的截距最小時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在直接坐標(biāo)系中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為.

I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,),判斷點P與直線l的位置關(guān)系;

II)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4件產(chǎn)品中,有一等品2件,二等品1件(一等品與二等品都是正品),次品1件,現(xiàn)從中任取2件,則下列說法正確的是(

A.兩件都是一等品的概率是

B.兩件中有1件是次品的概率是

C.兩件都是正品的概率是

D.兩件中至少有1件是一等品的概率是

查看答案和解析>>

同步練習(xí)冊答案