16.若復(fù)數(shù)$\frac{a-i}{1+i}$(a∈R)是純虛數(shù),則復(fù)數(shù)3a+4i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,由實(shí)部為0且虛部不為0求得a值,則答案可求.

解答 解:∵$\frac{a-i}{1+i}$=$\frac{(a-i)(1-i)}{(1+i)(1-i)}=\frac{(a-1)-(a+1)i}{2}$是純虛數(shù),
∴$\left\{\begin{array}{l}{a-1=0}\\{a+1≠0}\end{array}\right.$,得a=1.
∴復(fù)數(shù)3a+4i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為(3,4),在第一象限.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=lnx-x2的單調(diào)減區(qū)間是( 。
A.(-∞,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{2}}{2}$]C.[1,+∞)D.[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.二項(xiàng)式(x-$\frac{1}{x}$)6的展開式中x-2的系數(shù)為( 。
A.6B.15C.20D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從3名男生和2名女生中任意推選2名選手參加辯論賽,則推選出的2名選手恰好是1男1女的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且Sn=2an-1.
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$,則角A等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)z滿足$\frac{z-i}{z}$=i,則z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a3=5,S9=81,則數(shù)列{an-a4}的前n項(xiàng)和為( 。
A.n2-5nB.n2-6nC.n2-7nD.n2-9n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.($\sqrt{2x}$-$\frac{1}{x}$)9的二項(xiàng)式展開式中常數(shù)項(xiàng)的二項(xiàng)式系數(shù)為84(用符號或數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案