【題目】已知 ,則對(duì)此不等式描敘正

確的是( )

A. ,至少存在一個(gè)以為邊長(zhǎng)的等邊三角形

B. ,則對(duì)任意滿足不等式的都存在為邊長(zhǎng)的三角形

C. ,則對(duì)任意滿足不等式的都存在為邊長(zhǎng)的三角形

D. ,則對(duì)滿足不等式的不存在為邊長(zhǎng)的直角三角形

【答案】B

【解析】本題可用排除法,

對(duì)于,可得,故不存在這樣的錯(cuò)誤,排除;對(duì)于時(shí), 成立而以為邊的三角形不存在, 錯(cuò)誤,排除;對(duì)于 時(shí), 成立,存在以為邊的三角形為直角三角形,故錯(cuò)誤,排除故選B.

方法點(diǎn)睛】本題主要考查不等式的性質(zhì)、排除法解選擇題,屬于難題. 用特例代替題設(shè)所給的一般性條件,得出特殊結(jié)論,然后對(duì)各個(gè)選項(xiàng)進(jìn)行檢驗(yàn),從而做出正確的判斷,這種方法叫做特殊法. 若結(jié)果為定值,則可采用此法. 特殊法是“小題小做”的重要策略,排除法解答選擇題是高中數(shù)學(xué)一種常見(jiàn)的解題思路和方法,這種方法即可以提高做題速度和效率,又能提高準(zhǔn)確性,這種方法主要適合下列題型:(1)求值問(wèn)題(可將選項(xiàng)逐個(gè)驗(yàn)證);(2)求范圍問(wèn)題(可在選項(xiàng)中取特殊值,逐一排除);(3)圖象問(wèn)題(可以用函數(shù)性質(zhì)及特殊點(diǎn)排除);(4)解方程、求解析式、求通項(xiàng)、求前 項(xiàng)和公式問(wèn)題等等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線.

(1)求曲線被直線截得的弦長(zhǎng);

(2)與直線垂直的直線與曲線相切于點(diǎn),求點(diǎn)的直線坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知偶函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>

(1)求實(shí)數(shù)的值;

(2)若,求實(shí)數(shù)的值;

(3)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額的商品后即可抽獎(jiǎng),抽獎(jiǎng)方法是:從裝有2個(gè)紅球1個(gè)白球的甲箱與裝有2個(gè)紅球2個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,若摸出的2個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng).

)用球的標(biāo)號(hào)列出所有可能的摸出結(jié)果;

)有人認(rèn)為:兩個(gè)箱子中的紅球比白球多,所以中獎(jiǎng)的概率大于不中獎(jiǎng)的概率,你認(rèn)為正確嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I) 極大值;

(II) 求證:,其中,

(III)若方程有兩個(gè)不同的根, 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠品牌服裝的年固定成本100萬(wàn)元,每生產(chǎn)1萬(wàn)件需另投入27萬(wàn)元,設(shè)服裝廠一年內(nèi)共生產(chǎn)該品牌服裝萬(wàn)件并全部銷售完,每萬(wàn)件的銷售收入為R()萬(wàn)元.且

(1)寫出年利潤(rùn)y(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)關(guān)系式;

(2)年產(chǎn)量為多少萬(wàn)件時(shí),服裝廠在這一品牌的生產(chǎn)中所獲年利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動(dòng)點(diǎn)P,過(guò)P引平行于OB的直線和OA交于點(diǎn)C,設(shè)∠AOPθ,求△POC面積的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QAQA=AB=PD

I)證明:PQ⊥平面DCQ;

II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,直線經(jīng)過(guò)拋物線的焦點(diǎn),且垂直于拋物線的對(duì)稱軸,與拋物線兩交點(diǎn)間的距離為4.

(1)求拋物線的方程;

(2)已知,過(guò)的直線與拋物線相交于兩點(diǎn),設(shè)直線的斜率分別為,求證:為定值,并求出定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案