【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

保費(fèi)

設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:

一年內(nèi)出險(xiǎn)次數(shù)

0

1

2

3

4

概率

0.30

0.15

0.20

0.20

0.10

0.05

(1)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;

(2)已知一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出的概率.

【答案】(1)0.55(2)

【解析】分析:(1)將保費(fèi)高于基本保費(fèi)轉(zhuǎn)化為一年內(nèi)的出險(xiǎn)次數(shù),再根據(jù)表中的概率求解即可.(2)根據(jù)條件概率并結(jié)合表中的數(shù)據(jù)求解可得結(jié)論

詳解(1)設(shè)表示事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,

則事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于1,

(2)設(shè)表示事件:“一續(xù)保人本年度的保費(fèi)比基本保費(fèi)高出”,

則事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于3,

,

因此其保費(fèi)比基本保費(fèi)高出的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鞏固全國(guó)文明城市創(chuàng)建成果,今年吉安市開(kāi)展了拆除違章搭建鐵皮棚專項(xiàng)整治行為.為了了解市民對(duì)此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度,隨機(jī)從存在違章搭建的戶主中抽取了男性、女性共名進(jìn)行調(diào)查,調(diào)查結(jié)果如下:

支持

反對(duì)

合計(jì)

男性

女性

合計(jì)

(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為對(duì)此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度與“性別”有關(guān);

(2)現(xiàn)從參與調(diào)查的女戶主中按分層抽樣的方法抽取人進(jìn)行調(diào)查,分別求出所抽取的人中持“支持”和“反對(duì)”態(tài)度的人數(shù);

(3)現(xiàn)從(2)中所抽取的人中,再隨機(jī)抽取人贈(zèng)送小品,求恰好抽到人持“支持”態(tài)度的概率?

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某屆奧運(yùn)會(huì)上,中國(guó)隊(duì)以26金18銀26銅的成績(jī)稱金牌榜第三、獎(jiǎng)牌榜第二,某校體育愛(ài)好者在高三 年級(jí)一班至六班進(jìn)行了“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如表:

班號(hào)

一班

二班

三班

四班

五班

六班

頻數(shù)

5

9

11

9

7

9

滿意人數(shù)

4

7

8

5

6

6


(1)在高三年級(jí)全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對(duì)“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”不滿意的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義域?yàn)椋?,+∞)的單調(diào)函數(shù),若對(duì)任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實(shí)數(shù)a的取值范圍是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,曲線的極坐標(biāo)方程為,直線過(guò)點(diǎn)且與曲線相交于兩點(diǎn).

(1)求曲線的直角坐標(biāo)方程;

(2)若,求直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|4x﹣a|+|4x+3|,g(x)=|x﹣1|﹣|2x|.
(1)解不等式g(x)>﹣3;
(2)若存在x1∈R,也存在x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 (a>b>0)的離心率為 ,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為橢圓上的一點(diǎn),過(guò)點(diǎn)O作OP的垂線交直線 于點(diǎn)Q,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱(側(cè)棱垂直于底面)中,,,.

(1)證明:平面;

(2)若的中點(diǎn),在線段上是否存在一點(diǎn)使平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案