如圖,正三棱柱ABCA1B1C1的各棱長(zhǎng)都相等,DE分別是CC1AB1的中點(diǎn),點(diǎn)FBC上且滿足BFFC=1∶3 

(1)若MAB中點(diǎn),求證  BB1∥平面EFM;

(2)求證  EFBC;

 (3)求二面角A1B1DC1的大小   

(1)證明 連結(jié)EMMF,∵ME分別是正三棱柱的棱ABAB1的中點(diǎn),

BB1ME,又BB1平面EFM,∴BB1∥平面EFM 

(2)證明  取BC的中點(diǎn)N,連結(jié)AN由正三棱柱得  ANBC,

BFFC=1∶3,∴FBN的中點(diǎn),故MFAN

MFBC,而BCBB1,BB1ME 

MEBC,由于MFME=M,∴BC⊥平面EFM,

EF平面EFM,∴BCEF 

(3)解  取B1C1的中點(diǎn)O,連結(jié)A1O知,A1O⊥面BCC1B1,由點(diǎn)OB1D的垂線OQ,垂足為Q,連結(jié)A1Q,由三垂線定理,A1QB1D,故∠A1QD為二面角A1B1DC的平面角,易得∠A1QO=arctan 


解析:

見詳解

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長(zhǎng)都等于a,E是BB1的中點(diǎn).
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1;
(3)求點(diǎn)C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長(zhǎng)都2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長(zhǎng)是( 。
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點(diǎn)O為AB1上的動(dòng)點(diǎn),當(dāng)OD∥平面ABC時(shí),求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點(diǎn).
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案