【題目】若二次函數(shù)的圖象和直線無交點,現(xiàn)有下列結(jié)論:

①方程一定沒有實數(shù)根;②若,則不等式對一切實數(shù)都成立;

③若,則必存在實數(shù),使;④若,則不等式對一切實數(shù)都成立;⑤函數(shù)的圖象與直線也一定沒有交點,其中正確的結(jié)論是__________.(寫出所有正確結(jié)論的編號)

【答案】①②④⑤

【解析】因為函數(shù)f(x)的圖象與直線y=x沒有交點,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因為f[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x沒有實數(shù)根;
正確;
若a>0,則不等式f[f(x)]>f(x)>x對一切實數(shù)x都成立;故正確;
若a<0,則不等式f[f(x)]<x對一切實數(shù)x都成立,所以不存在x0,使f[f(x0)]>x0
錯誤;
a+b+c=0,則f(1)=0<1,可得a<0,因此不等式f[f(x)]<x對一切實數(shù)x都成立;
正確;
易見函數(shù)g(x)=f(-x),與f(x)的圖象關(guān)于y軸對稱,所以g(x)和直線y=-x也一定沒有交點.故正確;
故答案為:①②④⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2|x|﹣3a
(1)當(dāng)a=1時,在所給坐標(biāo)系中,畫出函數(shù)f(x)的圖象,并求f(x)的單調(diào)遞增區(qū)間
(2)若直線y=1與函數(shù)f(x)的圖象有4個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2-6x+8<0},B={x|(xa)(x-3a)<0}.

(1)若xAxB的充分條件,求a的取值范圍;

(2)若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,有下列5個命題:

①若,則的圖象自身關(guān)于直線軸對稱;

的圖象關(guān)于直線對稱;

③函數(shù)的圖象關(guān)于軸對稱;

為奇函數(shù),且圖象關(guān)于直線對稱,則周期為2;

為偶函數(shù), 為奇函數(shù),且,則周期為2.

其中正確命題的序號是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的函數(shù)
(1)用定義證明:f(x)為R上的奇函數(shù);
(2)用定義證明:f(x)在R上為減函數(shù);
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若對于在定義域內(nèi)存在實數(shù)滿足,則稱函數(shù)為“局部奇函數(shù)”.若函數(shù)是定義在上的“局部奇函數(shù)”,則實數(shù)的取值范圍是( 。

A. [1﹣,1+ B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程的三個實根分別為一個橢圓,一個拋物線,一個雙曲線的離心率,則的取值范圍(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3﹣12x在區(qū)間[﹣4,4]上的最小值是(
A.﹣9
B.﹣16
C.﹣12
D.﹣11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣2|.
(1)作出函數(shù)f(x)=x|x﹣2|的大致圖象;
(2)若方程f(x)﹣k=0有三個解,求實數(shù)k的取值范圍.
(3)若x∈(0,m](m>0),求函數(shù)y=f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案