5.已知f(x)=$\frac{x}{1+x}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,則f2017(x)的表達式為f2017(x)=$\frac{x}{1+2017x}$.

分析 由題意,可先求出f1(x),f2(x),f3(x)…,歸納出fn(x)的表達式,即可得出f2017(x)的表達式

解答 解:由題意f1(x)=f(x)=$\frac{x}{1+x}$.
f2(x)=f(f1(x))=$\frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}$=$\frac{x}{1+2x}$,
f3(x)=f(f2(x))=$\frac{\frac{x}{1+2x}}{1+\frac{x}{1+2x}}$=$\frac{x}{1+3x}$,

fn(x)=f(fn-1(x))=$\frac{x}{1+nx}$,
∴f2017(x)=$\frac{x}{1+2017x}$,
故答案為:$\frac{x}{1+2017x}$

點評 本題考查邏輯推理中歸納推理,由特殊到一般進行歸納得出結論是此類推理方法的重要特征.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ax3+bx2+cx+d圖象與y軸交點坐標為(0,4),其導函數(shù)y=f′(x)是以y軸為對稱軸的拋物線,大致圖象如圖所示.
(I)求函數(shù)f(x)的解析式;
(II)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)y=x2+2(a-1)x+5在區(qū)間(4,+∞)上是增函數(shù),則實數(shù)a的取值范圍是[-3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.經(jīng)過調(diào)查發(fā)現(xiàn),某產(chǎn)品在投放市場的一個月內(nèi)(按30天計算),前15天,價格直線上升,后15天,價格直線下降(價格為時間的一次函數(shù)),現(xiàn)抽取其中4天價格如表所示:
時間第4天第10天第18天第25天
價格(元)108120127120
(1)求價格f(x)關于時間x的函數(shù)解析式(x表示投放市場的第x天);
(2)若每天的銷量g(x)關于時間x的函數(shù)為g(x)=4+$\frac{2}{x}$(萬件),請問該產(chǎn)品哪一天的日銷售額最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若全集U={0,1,2,3,4,5}且∁UA={x∈N*|1≤x≤3},則集合A的真子集共有7個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知$\left\{\begin{array}{l}{x-y≥0}\\{3x-y-6≤0}\\{x+y-2≥0}\end{array}\right.$,則z=22x+y的最小值是( 。
A.1B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知$\overrightarrow a$=(2,-$\sqrt{3}$),$\overrightarrow b$=(sin2($\frac{π}{4}$+x),cos2x).令f(x)=$\overrightarrow a$•$\overrightarrow b$-1,x∈R,函數(shù)g(x)=f(x+φ),φ∈(0,$\frac{π}{2}$)的圖象關于(-$\frac{π}{6}$,0)對稱.
(Ⅰ) 求f(x)的解析式,并求φ的值;
(Ⅱ)在△ABC中sinC+cosC=1-$\sqrt{2}sin\frac{C}{2}$,求g(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在平面直角坐標系xOy中.橢圓C:$\frac{x^2}{2}$+y2=1的右焦點為F,直線為l:x=2
(1)求到點F和直線l的距離相等的點G的軌跡方程.
(2)過點F作直線交橢圓C于點A,B,又直線OA交l于點T,若$\overrightarrow{OT}=2\overrightarrow{OA}$,求線段AB的長;
(3)已知點M的坐標為(x0,y0),x0≠0,直線OM交直線$\frac{{{x_0}x}}{2}$+y0y=1于點N,且和橢圓C的一個交點為點P,是否存在實數(shù)λ,使得${\overrightarrow{OP}^2}=λ\overrightarrow{OM}•\overrightarrow{ON}$?,若存在,求出實數(shù)λ;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)f(x)=log3x-1的零點數(shù)為a,則a=1.

查看答案和解析>>

同步練習冊答案