解:(Ⅰ)由離心率e=,得,
即,①
又點B(-1,-3)在橢圓C:上,即,②
解①②得,
故所求橢圓方程為,
由A(2,0),B(-1,-3)得直線l的方程為y=x-2。
(Ⅱ)曲線x2-2mx+y2+4y+m2-4=0,
即圓(x-m)2+(y+2)2=8,其圓心坐標為G(m,-2),半徑r=2,表示圓心在直線y=-2上,半徑為2的動圓,
要求實數(shù)m的最小值,由下圖可知,只須考慮m<0的情形.
設(shè)圓G與直線l相切于點T,則由,得m=±4,
當(dāng)m=-4時,過點G(-4,-2)與直線l垂直的直線l′的方程為x+y+6=0,
解方程組,得T(-2,-4),
因為區(qū)域D內(nèi)的點的橫坐標的最小值與最大值分別為-1,2,
所以切點TD,
由圖可知當(dāng)圓G過點B時,m取得最小值,
即(-1-m)2+(-3+2)2=8,解得mmin=--1。
科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:選擇題
已知橢圓C:的離心率為,過右焦點且斜率為的直線與橢圓C相交于、兩點.若,則 =( )
A. B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知橢圓C:,它的離心率為.直線與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年吉林一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題
.已知橢圓C:的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線:與橢圓C交于,兩點,點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com