【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程是 以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線l與曲線C交于A,B兩點(diǎn).
(1)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(2)線段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA||MB|的值.

【答案】
(1)

解:將直線l的參數(shù)方程消去參數(shù)t得:x=﹣1+y,

∴直線l的極坐標(biāo)方程 ,

曲線C的極坐標(biāo)方程化成:ρsinθ=ρ2cos2θ,

其普通方程是:y=x2


(2)

解:將 代入y=x2

,3分

∵點(diǎn)M(﹣1,0)在直線上,

∴|MA||MB|=|t1t2|=2


【解析】(1)將直線l的參數(shù)方程消去參數(shù)t得直線的普通方程,再化成直線l的極坐標(biāo)方程,曲線C的極坐標(biāo)方程化成:ρsinθ=ρ2cos2θ,最后再化成普通方程即可;(2)將直線的參數(shù)方程代入y=x2得關(guān)于t的一元二次方程,再結(jié)合根與系數(shù)的關(guān)系即得|MA||MB|=|t1t2|=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某社區(qū)中學(xué)生的課外活動(dòng),對(duì)該社區(qū)的100名中學(xué)生進(jìn)行了調(diào)研,隨機(jī)抽取了若干名,年齡全部介于1318之間,將年齡按如下方式分成五組:第一組;第二組;第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三個(gè)組的頻率之比為,且第二組的頻數(shù)為4.

1試估計(jì)這100名中學(xué)生中年齡在內(nèi)的人數(shù);

2求調(diào)研中隨機(jī)抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)sinxsin xcos2x.

(1)f(x)的最小正周期和最大值;

(2)討論f(x)在()上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移 個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲船以每小時(shí)30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里,問乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某奶茶店對(duì)某時(shí)間段的奶茶銷售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)元和銷售量杯之間的一組數(shù)據(jù)如下表所示:

價(jià)格

5

5.5

6.5

7

銷售量

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量對(duì)奶茶的價(jià)格具有線性相關(guān)關(guān)系.

(1)求銷售量對(duì)奶茶的價(jià)格的回歸直線方程;

(2)欲使銷售量為13杯,則價(jià)格應(yīng)定為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;

(2)指出f(x)的周期、振幅、初相、對(duì)稱軸;

(3)此函數(shù)圖象由y=sinx的圖象怎樣變換得到?(注:y軸上每一豎格長(zhǎng)為1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線x2=4y的焦點(diǎn)F的直線l與拋物線相交于A、B兩點(diǎn).
(1)設(shè)拋物線在A、B處的切線的交點(diǎn)為M,若點(diǎn)M的橫坐標(biāo)為2,求△ABM的外接圓方程.
(2)若直線l與橢圓 + =1的交點(diǎn)為C,D,問是否存在這樣的直線l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足,且.

(1)求數(shù)列,的通項(xiàng)公式;

(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式 對(duì)一切nN*恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案