【題目】如圖1,已知長方形ABCD中,AB=2,AD=1,E為DC的中點.將△ADE沿AE折起,使得平面ADE⊥平面ABCE.
(1)求證:平面BDE⊥平面ADE
(2)求三棱錐 C﹣BDE的體積

【答案】
(1)證明:連接BE,∵長方形ABCD中,AB=2,AD=1,

E為DC的中點,DE=1,∴AE=BE=

∴AE2+BE2=2=AB2,∴BE⊥AE.

∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,BE平面ABCE

∴BE⊥平面ADE,又∵BE平面BDE,

∴平面BDE⊥平面ADE


(2)解:取AE中點F,連結(jié)DF,

∵AD=DE,∴DF⊥AE,

又∵平面ADE⊥平面ABCE,且交線為AE,DF平面ADE,

∴DF⊥平面BCE

在Rt△ADE中,AD=DE=1,AE= ,∴DF= ,

又∵VCBED=VDBCE

∴三棱錐C﹣BDE的體積


【解析】(1)連接BE,推民出BE⊥AE,從而BE⊥平面ADE,由此能證明平面BDE⊥平面ADE.(2)取AE中點F,連結(jié)DF,由VCBED=VDBCE , 能求出三棱錐C﹣BDE的體積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)fA(x)的定義域為A=[a,b),且fA(x)=( + ﹣1)2 +1,其中a,b為任意正實數(shù),且a<b.
(1)求函數(shù)fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2 , (k+1)2),x2∈Ik+1=[(k+1)2 , (k+2)2),其中k是正整數(shù),對一切正整數(shù)k,不等式 (x1)+ (x2))<m都有解,求m的取值范圍;
(3)若對任意x1 , x2 , x3∈A,都有 , , 為三邊長構(gòu)成三角形,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=﹣x3+ax2+bx+c的導(dǎo)數(shù)f'(x)滿足f'(﹣1)=0,f'(2)=9.
(1)求f(x)的單調(diào)區(qū)間;
(2)f(x)在區(qū)間[﹣2,2]上的最大值為20,求c的值.
(3)若函數(shù)f(x)的圖象與x軸有三個交點,求c的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用長為18cm的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣3ax2+3bx的圖象與直線12x+y﹣1=0相切于點(1,﹣11).
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中, , 的中點,將三角形沿翻折到圖②的位置,使得平面 平面.

(1)在線段上確定點,使得平面,并證明;

(2)求所在平面構(gòu)成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,點A(﹣2,0),B(2,0),C(x,1) (i)若∠ACB是直角,則x=
(ii)若△ABC是銳角三角形,則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某班學(xué)生一次英語測驗的成績分析,各分?jǐn)?shù)段的分布如圖(分?jǐn)?shù)取整數(shù)),由此,估計這次測驗的優(yōu)秀率(不小于80分)為(

A.92%
B.24%
C.56%
D.5.6%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案